Analytical solutions of the quasistatic thermoelasticity task with variable physical properties of a medium


Cite item

Full Text

Abstract

The high-precision approximate analytic solution of the nonlinear quasi-static problem of thermoelasticity for an infinite hollow cylinder with variable along the radial coordinate physical properties is obtained using the orthogonal Bubnov-Galyorkin method developed by the construction of systems of coordinate functions exactly satisfying inhomogeneous boundary conditions in any approximation. The mathematical formulation includes non-linear equations for the unknown function of displacement and inhomogeneous boundary conditions. The desired solution is supposed to precisely satisfy the boundary conditions in advance. The exact fulfillment of the boundary conditions is achieved using the coordinate functions of special design. The unknown coefficients are found by constructing the disparity of original differential equation, that should be orthogonal to all the coordinate functions. Hence, the unknown coefficients of solution yields a system of linear algebraic equations, which number is equal to the number ofapproximations of the solution. It is shown that the solution accuracy increases substantially with increasing the number of approximations. Thus, already in the ninth approximation the disparity of original differential equation is zero almost the entire range of the spatial variable. The maximum disparity in the sixth approximation is $\varepsilon = 5\cdot 10^{-4}$.

About the authors

Vasiliy A Kudinov

Samara State Technical University

Email: totig@yandex.ru
(Dr. Phys. & Math. Sci.), Head of Dept., Dept. of Theoretical Fundamentals of Heat-Engineering and Hydromechanic 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

Anastasiya E Kuznetsova

Samara State Technical University

Email: kuznetsovaae@rambler.ru
Postgraduate Student, Dept. of Theoretical Fundamentals of Heat-Engineering and Hydromechanics 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

Anton V Eremin

Samara State Technical University

Email: a.v.eremin@list.ru
Assistant (Cand. Techn. Sci.), Dept. of Theoretical Fundamentals of Heat-Engineering and Hydromechanics 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

Eugeneya V Kotova

Samara State Technical University

Email: larginaevgenya@mail.ru
Assistant (Cand. Techn. Sci.), Dept. of Theoretical Fundamentals of Heat-Engineering and Hydromechanics 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

References

  1. B. A. Boley, J. H. Weiner, Theory of thermal stresses, New York, John Wiley, 1960, xvi+586 pp.
  2. Б. Боли, Дж. Уэйнер, Теория температурных напряжений. М.: Мир, 1964. 517 с.
  3. А. Д. Коваленко, Введение в термоупругость. Киев: Наукова думка, 1965. 202 с.
  4. S. P. Timoshenko, J. Goodyear, Theory of Elasticity, New York, McGraw-Hill, 1970.
  5. С. П. Тимошенко, Дж. Гудьер, Теория упругости. М.: Наука, 1979. 560 с.
  6. В. А. Кудинов, Э. М. Карташов, В. В. Калашников, Аналитические решения задач тепломассопереноса и термоупругости для многослойных конструкций. М.: Высшая школа, 2005. 430 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).