On the dynamic programming algorithm under the assumption of monotonicity


Cite item

Full Text

Abstract

We formulate a discrete optimal control problem, which has not been considered earlier, which arises in the design of oil and gas networks. For this problem we set four theorems so that you can have a process, the optimal process and the optimum value. Necessary and sufficient conditions we give in Theorem 1. Under these conditions, by Theorem 1, we get not empty attainability intervals. For each interval, we choose the grid-a subset of its points, where by an arbitrary point of interval, we find the nearest point on the left. By means of such approximations, we define the Bellman functions on the grids. Using Bellman functions in Theorem 2 we give the process and we evaluate its deviation from the optimal process. In Theorem 2, we guarantee, that the given process is optimal when the attainability intervals and their grids coincide. In other cases, to get the optimal process, we use Theorem 3 and Theorem 4. In Theorem 3 we set that the process given in Theorem 2, is minimal in the lexicographical order which we introduce using Bellman functions. In Theorem 3 we give procedure that builds, if possible, in this order, the next process, skipping only the processes that are not optimal. We find the optimal process and the optimal value by Theorem 4, starting from the process given in Theorem 2, using one or more calls of the procedure given in Theorem 3.

About the authors

Valery G Ovchinnikov

Samara State Technical University

Email: ovchinnikov42@mail.ru
Senior Lecturer, Dept. of Oil and Gas Fields Development 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

References

  1. В. А. Емеличев, В. Г. Овчинников, “Применение метода построения последовательности планов к решению задачи обустройства нефтяных месторождений” // Докл. АН БССР, 1982. Т. 26, No 4. С. 344-347.
  2. В. Г. Овчинников, “Алгоритмы динамического программирования оптимальных и близких к ним процессов” / Труды пятой Всероссийской конференции с международным участием (29-31 мая 2008 г.). Часть 4, Информационные технологии в математическом моделировании / Матем. моделирование и краев. задачи, Самара: СамГТУ, 2008. С. 107-112.
  3. В. Г. Овчинников, “К алгоритмам динамического программирования оптимальных процессов” // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2012. No 3(28). С. 215-218. doi: 10.14498/vsgtu1102.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).