A nonlocal problem for mixed type equation with singular coefficient in domain with half-strip as hyperbolic part


Cite item

Full Text

Abstract

A nonlocal problem for mixed type equation with a singular coefficient and the spectral parameter is formulated in the field, which hyperbolic part is vertical half-strip and elliptic part is rectangle. The nonlocal condition of problem combines the values of required function on the right and left boundaries of half-stripe and rectangle. The only requirement on the unknown function in the change type line is continuity. To research the given problem we apply the spectral method. The uniqueness and existence of a solution are proved. The solution is constructed as biortogonal series. Coefficients of this series should require special ODE systems, solved in the paper. The uniform convergence of the series is proved with the restrictions on problem conditions.

About the authors

Anton A Abashkin

Samara State University of Architecture and Civil Engineering

Email: samcocaa@rambler.ru
(Cand. Phys. & Math. Sci.; samcocaa@rambler.ru), Assistant, Dept. of High Mathematics 194, Molodogvardeyskaya st., Samara, 443001, Russian Federation

References

  1. Пулькин С. П. О единственности решения сингулярной задачи Геллерстедта // Изв. вузов. Матем., 1960. № 6. С. 214-225.
  2. Волкодавов В. Ф. О единственности решения задачи T N для одного уравнения смешанного типа / Волжский математический сборник, Вып. 9. Куйбышев, 1970. С. 55-65.
  3. Репин О. А. Нелокальная задача для уравнения смешанного типа с сингулярным коэффициентом // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2005. № 34. С. 5-9. doi: 10.14498/vsgtu331.
  4. Рузиев М. Х. О нелокальной задаче для уравнения смешанного типа с сингулярным коэффициентом в неограниченной области // Изв. вузов. Матем., 2010. № 11. С. 41-49.
  5. Сабитов К. Б. Задача Дирихле для уравнений смешанного типа в прямоугольной области // Докл. РАН, 2007. Т. 413, № 1. С. 23-26.
  6. Сабитов К. Б., Сулейманова А. Х. Задача Дирихле для уравнения смешанного типа второго рода в прямоугольной области // Изв. вузов. Матем., 2007. № 4. С. 45-53.
  7. Ильин В. А., Моисеев Е. И. Двумерная нелокальная краевая задача для оператора Пуассона в дифференциальной и разностной трактовках // Матем. моделирование, 1990. Т. 2, № 8. С. 139-156.
  8. Франкль Ф. И. К образованию скачков уплотнения в дозвуковых течениях с местными сверхзвуковыми скоростями // Прикл. матем. и мех., 1947. Т. 11, № 1. С. 199-202.
  9. Моисеев Е. И. О решении спектральным методом одной нелокальной краевой задачи // Диффер. уравн., 1999. Т. 35, № 8. С. 1094-1100.
  10. Лернер М. Е., Репин О. А. О задачах типа задачи Франкля для некоторых эллиптических уравнений с вырождением разного рода // Диффер. уравн., 1999. Т. 35, № 8. С. 1087-1093.
  11. Сабитов К. Б., Сидоренко О. Г. Нелокальная задача для вырождающегося гиперболического уравнения / Современные проблемы физики и математики: Труды Всероссийской научной конференции. Т. 1 (16-18 сентября 2004 г.). Уфа: Гилем, 2004. С. 80-86.
  12. Сидоренко О. Г. Существенно нелокальная задача для уравнения смешанного типа в полуполосе // Изв. вузов. Матем., 2007. № 3. С. 60-64.
  13. Лернер М. Е., Репин О. А. Нелокальные краевые задачи в вертикальной полуполосе для обобщенного осесимметрического уравнения Гельмгольца // Диффер. уравн., 2001. Т. 37, № 11. С. 1562-1564.
  14. Моисеев Е. И. О разрешимости одной нелокальной краевой задачи // Диффер. уравн., 2001. Т. 37, № 11. С. 1565-1567.
  15. Абашкин А. А. Однозначная разрешимость нелокальной задачи для осесимметрического уравнения Гельмгольца // Вестн. СамГУ. Естественнонаучн. сер., 2011. № 2(83). С. 5-14.
  16. Абашкин А. А. Об одной нелокальной задаче для осесимметрического уравнения Гельмгольца // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2011. № 3(24). С. 26-34. doi: 10.14498/vsgtu852.
  17. Сабитова Ю. К. Нелокальная задача для уравнения Лаврентьева-Бицадзе в прямоугольной области / Труды Стерлитамакского филиала АН РБ, Вып. 6. Уфа: Гилем, 2009. С. 94-102.
  18. Сабитова Ю. К. Краевые задачи с нелокальным условием для уравнений смешанного типа в прямоугольной области: Дисс.. к.ф.м.н. Стерлитамак, 2007. 133 с.
  19. Лебедев Н. Н. Специальные функции и их приложения. Спб.: Лань, 2010. 368 с.
  20. Зорич В. А. Математический анализ. Т. 2. М.: МЦНМО, 2002. 787 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).