Задачи оптимального и жесткого управления решениями специального вида нестационарных уравнений соболевского типа


Цитировать

Полный текст

Аннотация

Уравнения соболевского типа в настоящее время составляют обширную область среди неклассических уравнений математической физики. Неклассическими называют те уравнения математической физики, чьи представления в виде уравнений или систем уравнений в частных производных не укладываются в рамки одного из классических типов - эллиптического, параболического или гиперболического. В данной работе показано существование единственного оптимального и жёсткого управлений решениями задачи Шоуолтера-Сидорова для нестационарного операторно-дифференциального уравнения, неразрешенного относительно производной по времени. Нестационарность уравнения рассмотрена в виде произведения одного из операторов уравнения и скалярной функции, зависящей от времени, а свойства операторов таковы, что стационарное уравнение обладает разрешающей сильно непрерывной вырожденной полугруппой. Статья, кроме введения и списка литературы, содержит две части. В первой части приводятся необходимые сведения теории относительно $p$-радиальных операторов, во второй части содержится основной результат статьи.

Об авторах

Минзиля Алмасовна Сагадеева

Южно-Уральский государственный университет (национальный исследовательский университет)

Email: sagadeeva_ma@mail.ru
(к.ф.-м.н., доцент), доцент, каф. информационно-измерительной техники. Россия, 454080, Челябинск, пр. Ленина, 76

Андрей Николаевич Шулепов

Южно-Уральский государственный университет (национальный исследовательский университет)

Email: andrewn92@mail.ru
магистрант, каф. уравнений математической физики. Россия, 454080, Челябинск, пр. Ленина, 76

Список литературы

  1. Г. А. Свиридюк, С. А. Загребина, “Задача Шоуолтера-Сидорова как феномен уравнений соболевского типа” // Известия Иркутского государственного университета. Сер. Математика, 2010. Т. 3, № 1. С. 104-125.
  2. Г. В. Демиденко, С. В. Успенский, Уравнения и системы, не разрешенные относительно старшей производной. Новосибирск: Научная книга, 1998. xviii+437 с.
  3. G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev type equations and degenerate semigroups of operators / Inverse and Ill-Posed Problems Series, Utrecht, Boston, VSP, 2003, viii+216 pp.
  4. A. B. Al'shin, M. O. Korpusov, A. G. Sveshnikov, Blow-up in nonlinear Sobolev type equations / De Gruyter Series in Nonlinear Analysis and Applications, vol. 15, Berlin, Walter de Gruyter & Co., 2011, xii+648 pp.
  5. М. А. Сагадеева, А. Н. Шулепов, “Аппроксимации вырожденных C0 -полугрупп” // Вестник ЮУрГУ. Сер. Математическое моделирование и программирование, 2013. Т. 6, № 2. С. 133-137.
  6. М. А. Сагадеева, А. Д. Бадоян, “Оптимальное управление решениями нестационарных уравнений соболевского типа специального вида в относительно секториальном случае” // Вестник Магнитогорского государственного университета. Математика, 2013. № 15. С. 68-80.
  7. J. L. Lions, Control of distributed singular systems, Paris, Gauther-Villars, 1985, 552 pp.; New York, John Wiley & Sons Inc., 1987, 576 pp.
  8. Ж. Л. Лионс, Управление сингулярными распределенными системами. М.: Наука, 1987. 368 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2014

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).