О влиянии младших членов по переменной $x$ на спектральные свойства задачи Дирихле для гиперболических систем


Цитировать

Полный текст

Аннотация

Работа посвящена сравнительному изучению и описанию спектральных свойств дифференциальных операторов, порождённых задачей Дирихле для гиперболической системы без «младших членов» вида $$ \cfrac{\partial^2{u^1}}{\partial{t}^2}+\cfrac{\partial^2{u^2}}{\partial{x}^2} = \lambda{u^1}+f^1, \quad \cfrac{\partial^2{u^2}}{\partial{t}^2}+\cfrac{\partial^2{u^1}}{\partial{x}^2} = \lambda{u^2}+ f^2, $$ и для гиперболической системы с <<младшими членами>> - $$ \cfrac{\partial^2{u^1}}{\partial{t}^2}+\cfrac{\partial^2{u^2}}{\partial{x}^2}+\cfrac{\partial{u^2}}{\partial{x}} =\lambda{u^1}+f^1, \quad \cfrac{\partial^2{u^2}}{\partial{t}^2}+\cfrac{\partial^2{u^1}}{\partial{x}^2}+\cfrac{\partial{u^1}}{\partial{x}} = \lambda{u^2}+ f^2, $$ рассматриваемых в замыкании $V_{t,x}$ ограниченной области $\Omega_{t,x}=(0;\pi)^2$ евклидова пространства $\mathbb{R}^2_{t,x}.$ Исследование спектральных свойств граничных задач для систем линейных дифференциальных уравнений гиперболического типа ведётся в гильбертовом пространстве $\mathcal{H}_{t,x}$ в терминах спектрально замкнутых операторов $L:\mathcal{H}_{t,x}\to\mathcal{H}_{t,x}$. В настоящей работе для замкнутых дифференциальных операторов $L:\mathcal{H}_{t,x}\to\mathcal{H}_{t,x},$ порождённых задачей Дирихле для гиперболических систем второго порядка, изучены спектры: $C\sigma{L}=R\sigma{L}$ - пустое множество; точечный спектр $P\sigma{L}$ располагается в вещественной прямой комплексной плоскости $\mathbb{C}$. В случае гиперболической системы без младших членов собственные вектор-функции оператора $L$ образуют ортогональный базис. В случае гиперболической системы с младшими членами вектор-функции оператора $L$ образуют базис Рисса, не являющийся ортогональным в гильбертовом пространстве $\mathcal{H}_{t,x}.$ Сформулированы теоремы о структуре спектра $\sigma L$ оператора $L$, порождённого задачей Дирихле.

Об авторах

Олеся Васильевна Алексеева

Елецкий государственный университет им. И. А. Бунина

Email: o.v.alexeeva@gmail.com
соискатель, каф. вычислительной математики и информатики. Россия, 399770, Липецкая обл., Елец, ул. Коммунаров, 28

Василий Васильевич Корниенко

Елецкий государственный университет им. И. А. Бунина

Email: v_v_kornienko@mail.ru
(д.ф.-м.н., проф.), заведующий кафедрой, каф. вычислительной математики и информатики Россия, 399770, Липецкая обл., Елец, ул. Коммунаров, 28

Дмитрий Васильевич Корниенко

Елецкий государственный университет им. И. А. Бунина

Email: dmkornienko@mail.ru
(к.ф.-м.н., доц.), доцент, каф. вычислительной математики и информатики Россия, 399770, Липецкая обл., Елец, ул. Коммунаров, 28

Список литературы

  1. А. А. Дезин, “Смешанные задачи для некоторых симметрических гиперболических систем” // Докл. АН СССР, 1956. Т. 107, № 1. С. 13-16.
  2. А. А. Дезин, “Граничные задачи для некоторых симметричных линейных систем первого порядка” // Матем. сб., 1959. Т. 49(91), № 4. С. 459-484.
  3. А. А. Дезин, “Теоремы существования и единственности решений граничных задач для уравнений с частными производными в функциональных пространствах” // УМН, 1959. Т. 14, № 3(87). С. 21-73.
  4. В. К. Романко, “Смешанные краевые задачи для одной системы уравнений” // Докл. АН СССР, 1986. Т. 286, № 1. С. 47-50.
  5. V. K. Romanko, “Mixed boundary value problems for a system of equations” // Sov. Math., Dokl., 1986. vol. 33, no. 1. pp. 38-41.
  6. А. А. Дезин, Общие вопросы теории граничных задач. М.: Наука, 1980. 208 с.
  7. С. Качмаж, Г. Штейнгауз, Теория ортогональных рядов. М.: Физ.-мат. лит., 1958. 507 с.
  8. Н. Данфорд, Дж. Т. Шварц, Линейные операторы. Т. 1: Общая теория. М.: Иностр. лит-ра, 1962. 895 с.
  9. N. Dunford, J. T. Schwartz, Linear Operators, V. 1, General Theory, New York - London, John Wiley & Sons, 1988, xiv+858 pp.
  10. Корниенко Д. В., “О спектральных задачах для линейных систем дифференциальнооператорных уравнений” // Вестник Елецк. госуд. ун-та им. И. А. Бунина. Сер.: Математика, физика, 2004. № 5. 71-78 с.
  11. Д. В. Корниенко, “Об одной спектральной задаче для двух гиперболических систем уравнений” // Диффер. уравн., 2006. Т. 42, № 1. С. 91-100.
  12. D. V. Kornienko, “On a spectral problem for two hyperbolic systems” // Differ. Equ., 2006. vol. 42, no. 1. pp. 101-111. doi: 10.1134/S0012266106010083.
  13. Д. В. Корниенко, “О спектре задачи Дирихле для систем дифференциально-операторных уравнений” // Диффер. уравн., 2006. Т. 42, № 8. С. 1063-1071.
  14. D. V. Kornienko, “On the spectrum of the Dirichlet problem for systems of operator-differential equations” // Differ. Equ., 2006. vol. 42, no. 8. pp. 1124-1133 doi: 10.1134/S0012266106080076.
  15. А. А. Дезин, “О слабой и сильной иррегулярности” // Диффер. уравн., 1981. Т. 17, № 10. С. 1851-1858.
  16. О. В. Алексеева, “О спектре задачи Дирихле для двух эллиптических систем” // Научные ведомости Белгородcкого государственного университета. Сер.: Математика. Физика, 2010. Т. 17(88), № 20. С. 5-9.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2014

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).