On Leibniz-Poisson special polynomial identities


Cite item

Full Text

Abstract

In this paper we study Leibniz-Poisson algebras satisfying polynomial identities. We study Leibniz-Poisson special and Leibniz-Poisson extended special polynomials. We show that the sequence of codimensions $\{r_n({\bf V})\}_{n\geq 1}$ of every extended special space of variety ${\bf V}$ of Leibniz-Poisson algebras over an arbitrary field is either bounded by a polynomial or at least exponential. Furthermore, if this sequence is bounded by polynomial then there is a polynomial $R(x)$ with rational coefficients such that $r_n({\bf V}) = R(n)$ for all sufficiently large n. It follows that there exists no variety of Leibniz-Poisson algebras with intermediate growth of the sequence $\{r_n({\bf V})\}_{n\geq 1}$ between polynomial and exponential. We present lower and upper bounds for the polynomials $R(x)$ of an arbitrary fixed degree.

About the authors

Sergey M Ratseev

Ulyanovsk State University

Email: RatseevSM@mail.ru
(Cand. Phys. & Math. Sci.), Associate Professor, Dept. of Information Security & Control Theory 42, L. Tolstoy st., Ulyanovsk, 432017, Russian Federation

Olga I Cherevatenko

Ulyanovsk State I. N. Ulyanov Pedagogical University

Email: chai@pisem.net
(Cand. Phys. & Math. Sci.), Associate Professor, Dept. of Higher Mathematics 4, Ploshchad’ 100-letiya so dnya rozhdeniya V. I. Lenina, Ulyanovsk, 432063, Russian Federation

References

  1. С. М. Рацеев, “Коммутативные алгебры Лейбница-Пуассона полиномиального роста” // Вестн. СамГУ. Естественнонаучн. сер., 2012. № 3/1(94). С. 54-65.
  2. S. M. Ratseev, “On varieties of Leibniz-Poisson algebras with the identity {x, y}·{z, t} = 0” // J. Sib. Fed. Univ. Math. Phys., 2013. vol. 6, no. 1. pp. 97-104.
  3. С. М. Рацеев, “Необходимые и достаточные условия полиномиальности роста многообразий алгебр Лейбница-Пуассона” // Изв. вузов. Матем., 2014. № 3. С. 33-39.
  4. S. M. Ratseev, “Necessary and sufficient conditions of polynomial growth of varieties of Leibniz-Poisson algebras” // Russian Math. (Iz. VUZ), 2014. vol. 58, no. 3. pp. 26-30. doi: 10.3103/S1066369X14030037.
  5. С. М. Рацеев, О. И. Череватенко, “Экспоненты некоторых многообразий алгебр Лейбница-Пуассона” // Вестн. СамГУ. Естественнонаучн. сер., 2013. № 3(104). С. 42-52.
  6. С. М. Рацеев, “Об экспонентах некоторых многообразий линейных алгебр” // ПДМ, 2013. № 3. С. 32-34.
  7. С. М. Рацеев, О. И. Череватенко, “О некоторых многообразиях алгебр Лейбница-Пуассона с экстремальными свойствами” // Вестн. Томск. гос. ун-та. Матем. и мех., 2013. № 2. С. 57-59.
  8. С. М. Рацеев, О. И. Череватенко, “О метабелевых многообразиях алгебр Лейбница-Пуассона” // Изв. Иркутского гос. ун-та. Сер. Математика, 2013. Т. 6, № 1. С. 72-77.
  9. О. И. Череватенко, “Многообразия линейных алгебр полиномиального роста” // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2013. № 4(33). С. 7-14. doi: 10.14498/vsgtu1262.
  10. D. R. Farkas, “Poisson polynomial identities” // Comm. Algebra, 1998. vol. 26, no. 2. pp. 401-416. doi: 10.1080/00927879808826136.
  11. D. R. Farkas, “Poisson polynomial identities II” // Arch. Math. (Basel), 1999. vol. 72, no. 4. pp. 252-260. doi: 10.1007/s000130050329.
  12. S. P. Mishchenko, V. M. Petrogradsky, A. Regev, “Poisson PI algebras” // Trans. Amer. Math. Soc., 2007. vol. 359, no. 10. pp. 4669-4694. doi: 10.1090/S0002-9947-07-04008-1.
  13. С. М. Рацеев, “Алгебры Пуассона полиномиального роста” // Сиб. матем. журн., 2013. Т. 54, № 3. С. 700-711.
  14. S. M. Ratseev, “Poisson algebras of polynomial growth” // Siberian Math. J., 2013. vol. 54, no. 3. pp. 555-565. doi: 10.1134/S0037446613030191.
  15. С. М. Рацеев, “Рост в алгебрах Пуассона” // Алгебра и логика, 2011. Т. 50, № 1. С. 68-88.
  16. S. M. Ratseev, “Growth in Poisson algebras” // Algebra and Logic, 2011. vol. 50, no. 1. pp. 46-61. doi: 10.1007/s10469-011-9123-z.
  17. С. М. Рацеев, “Эквивалентные условия полиномиальности роста многообразий алгебр Пуассона” // Вестн. Моск. ун-та. Сер. 1, Математика. Механика, 2012. Т. 67, № 5. С. 8-13.
  18. S. M. Ratseev, “Equivalent conditions of polynomial growth of a variety of Poisson algebras” // Moscow University Mathematics Bulletin, 2012. vol. 67, no. 5-6. pp. 195-199. doi: 10.3103/S0027132212050026.
  19. С. М. Рацеев, “О некоторых алгебрах Пуассона с экстремальными свойствами” // Науч. ведомости БелГУ. Сер. Мат. Физ., 2013. Т. 30, № 5(148). С. 107-110.
  20. С. М. Рацеев, “Оценки роста некоторых многообразий алгебр Пуассона” // Науч. ведомости БелГУ. Сер. Мат. Физ., 2013. Т. 31, № 11. С. 93-101.
  21. О. И. Череватенко, “О лиево нильпотентных алгебрах Пуассона” // Науч. ведомости БелГУ. Сер. Мат. Физ., 2013. Т. 29, № 23(142). С. 14-16.
  22. I. P. Shestakov, U. U. Umirbaev, “The tame and the wild automorphisms of polynomial rings in three variables” // J. Amer. Math. Soc., 2004. vol. 17, no. 1. pp. 197-227. doi: 10.1090/S0894-0347-03-00440-5.
  23. M. Nagata, On the automorphism group on k[x, y], Department of Mathematics, Kyoto University / Lectures in Mathematics, vol. 5, Tokyo, Kinokuniya Book-Store Co., 1972, v+53 pp.
  24. Ю. А. Бахтурин, Тождества в алгебрах Ли. М.: Наука, 1985. 448 с.
  25. A. Giambruno, M. V. Zaicev, Polynomial Identities and Asymptotic Methods / Mathematical Surveys and Monographs, vol. 122, Providence, RI, American Mathematical Society, 2005, xiv+352 pp. doi: 10.1090/surv/122.
  26. V. Drensky, Free algebras and PI-algebras. Graduate course in algebra, Singapore, SpringerVerlag, 2000, xii+271 pp.
  27. С. М. Рацеев, “Рост и кодлина пространств специального вида многообразий алгебр Пуассона” // Известия высших учебных заведений. Поволжский регион, 2006. № 5(26). С. 125-135.
  28. V. Drensky, A. Regev, “Exact asymptotic behaviour of the codimention of some P.I. Algebras” // Israel J. Math, 1996. vol. 96, no. 1. pp. 231-242. doi: 10.1007/BF02785540.
  29. С. М. Рацеев, О. И. Череватенко, “О нильпотентных алгебрах Лейбница-Пуассона” // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2012. № 4(29). С. 207-211. doi: 10.14498/vsgtu1075.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).