Задача со смещением для вырождающегося внутри области гиперболического уравнения


Цитировать

Полный текст

Аннотация

Для вырождающегося гиперболического уравнения в характеристической области (двуугольнике) исследована внутреннекраевая задача с операторами дробного интегро-дифференцирования (в смысле Римана-Лиувилля), в которой значения решения уравнения на характеристиках поточечно связаны со значением решения и производной от него на линии вырождения уравнения. Модифицированным методом Трикоми при ограничениях в виде неравенств на известные функции доказана теорема единственности. Вопрос существования решения задачи редуцирован к разрешимости сингулярного интегрального уравнения с ядром Коши нормального типа.

Об авторах

Олег Александрович Репин

Самарский государственный экономический университет

Email: matstat@mail.ru
(д.ф.-м.н., проф.), заведующий кафедрой, каф. математической статистики и эконометрики Россия, 443090, Самара, ул. Советской Армии, 141

Светлана Каншубиевна Кумыкова

Кабардино-Балкарский государственный университет им. Х. М. Бербекова

Email: bsk@rect.kbsu.ru
(к.ф.-м.н., доц.), доцент, каф. теории функций и функционального анализа Россия, 360004, Нальчик, ул. Чернышевского, 173

Список литературы

  1. С. Г. Самко, А. А. Килбас, О. И. Маричев, Интегралы и производные дробного порядка и некоторые их приложения, Минск: Наука и техника, 1987. 688 с.
  2. А. М. Нахушев, Задачи со смещением для уравнений в частных производных, М.: Наука, 2006. 287 с.
  3. М. М. Смирнов, Вырождающиеся гиперболические уравнения, Минск: Высшая школа, 1977. 158 с.
  4. С. К. Кумыкова, “Краевая задача со смещением для вырождающегося внутри области гиперболического уравнения” // Дифференц. уравнения, 1980. Т. 16, No 1. С. 93-104.
  5. О. А. Репин, С. К. Кумыкова, “Нелокальная задача для уравнения смешанного типа третьего порядка с обобщенными операторами дробного интегро-дифференцирования произвольного порядка” // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2011. No 4(25). С. 25-36. doi: 10.14498/vsgtu1014.
  6. С. К. Кумыкова, Ф. Б. Нахушева, “Об одной краевой задаче для гиперболического уравнения, вырождающегося внутри области” // Дифференц. уравнения, 1978. Т. 14, No 1. С. 50-65.
  7. О. А. Репин, Краевые задачи со смещением для уравнений гиперболического и смешанного типов, Самара: Саратов. гос. ун-т, Самарский филиал, 1992. 164 с.
  8. Н. И. Мусхелишвили, Сингулярные интегральные уравнения, М.: Наука, 1968. 512 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2014

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).