On plane thermoelastic waves in hemitropic micropolar continua


Cite item

Full Text

Abstract

The paper deals with the coupled heat transport and dynamic equations of the hemitropic thermoelastic micropolar continuum formulated in terms of displacements, microrotations and temperature increment which are to be determined in applied problems. The mechanism of thermal conductivity is considered as simple thermodiffusion. Hemitropic constitutive constants are reduced to a minimum set nevertheless retaining hemitropic constitutive behaviour and thermoelastic semi-isotropy. Solutions of thermoelastic coupled equations in the form of propagating plane waves are studied. Their spatial polarizations are determined. An algebraic bicubic equation for the determination of wavenumbers is obtained. It is found that for a coupled thermoelastic wave actually there are exactly three normal complex wavenumbers. Athermal wave is also investigated. Spatial polarizations in this case form (together with the wave vector) a spatial trihedron of mutually orthogonal directions. For an athermal wave there are (depending on the case) either two real normal wavenumbers or single wavenumber.

About the authors

Yuri Nikolaevich Radayev

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Email: y.radayev@gmail.com. radayev@ipmnet.ru
Doctor of physico-mathematical sciences, Professor 101, pr. Vernadskogo, Moscow, 119526, Russian Federation

Vladimir Aleksandrovich Kovalev

Moscow City Government University of Management Moscow

Email: vlad_koval@mail.ru. kovalev.kam@gmail.com
Doctor of physico-mathematical sciences, Professor 28, Sretenka st., Moscow, 107045, Russian Federation

References

  1. Nowacki W., Theory of Asymmetric Elasticity, Pergamon Press, Oxford, 1986, viii+383 pp.
  2. Radayev Y. N., "The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories", Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 22:3 (2018), 504-517 (In Russian)
  3. Nowacki W., Theory of micropolar elasticity, International Centre for Mechanical Sciences. Courses and Lectures, 25, Springer-Verlag, Wien, 1972, 286 pp
  4. Brekhovskikh L. M., Goncharov V. V., Introduction to Continuum Mechanics (in Application to Theory of Waves), Nauka Publ., Moscow, 1982, 336 pp. (In Russian)
  5. Sushkevich A. K., Foundations of Higher Algebra, ONTI, Moscow, Leningrad, 1937, 476 pp. (In Russian)
  6. Radayev Y. N., "Hyperbolic theories and applied problems of solid mechanics", "Actual Problems of Mechanics", Int. Conf., Dedicated to L. A. Galin 100th Anniversary (September, 20-21, 2012. Moscow), Book of Abstracts, IPMech RAS, Moscow, 2012, 75-76 (In Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).