Задача Коши для системы дифференциальных уравнений гиперболического типа порядка n с некратными характеристиками


Цитировать

Полный текст

Аннотация

Рассмотрена задача Коши для дифференциального гиперболического уравнения порядка n с некратными характеристиками. Приведено регулярное решение задачи Коши для дифференциального уравнения гиперболического типа порядка n с некратными характеристиками. Получено решение задачи Коши для системы дифференциальных уравнений гиперболического типа порядка n, не содержащей производных меньше порядка n, с некратными характеристиками в случае коммутирующих матричных коэффициентов. Как результат исследований сформулирована теорема о существовании и единственности регулярного решения задачи Коши для системы дифференциальных уравнений гиперболического типа порядка n с некратными характеристиками.

Об авторах

Александр Анатольевич Андреев

Самарский государственный технический университет

Email: andre01071948@yandex.ru
http://orcid.org/0000-0002-6611-6685 кандидат физико-математических наук, доцент; доцент; каф. прикладной математики и информатики Россия, 443100, Самара, ул. Молодогвардейская, 244

Юлия Олеговна Яковлева

Самарский национальный исследовательский университет имени академика С.П. Королева

Email: julia.yakovleva@mail.ru
http://orcid.org/0000-0002-9839-3740 кандидат физико-математических наук; доцент; каф. математики и бизнес-информатики Россия, 443086, Самара, Московское ш., 34

Список литературы

  1. Ali Raeisian S. M. Effective Solution of Riemann Problem for Fifth Order Improperly Elliptic Equation on a Rectangle // AJCM, 2012. vol. 2, no. 4. pp. 282-286. doi: 10.4236/ajcm.2012.24038.
  2. Бицадзе А. В. Уравнения математической физики. М.: Наука, 1982. 336 с.
  3. Kinoshita T. Gevrey Wellposedness of the Cauchy Problem for the Hyperbolic Equations of Third Order with Coefficients Depending Only on Time // Publications of the Research Institute for Mathematical Sciences, 1998. vol. 34, no. 3. pp. 249-270. doi: 10.2977/prims/1195144695.
  4. Nikolov A., Popivanov N. Singular solutions to Protter’s problem for (3+1)-D degenerate wave equation (8-13 June 2012; Sozopol, Bulgaria) / AIP Conf. Proc., 1497, 2012. pp. 233-238. doi: 10.1063/1.4766790.
  5. Rieman B. Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite (Aus dem achten Bande der Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen. 1860.) / Bernard Riemann’s Gesammelte mathematische Werke und wissenschaftlicher Nachlass; eds. R. Dedekind, H. M. Weber. United States: BiblioLife, 2009. pp. 145-164 (In German). doi: 10.1017/cbo9781139568050.009.
  6. Жегалов В. И., Миронов А. Н. Дифференциальные уравнения со старшими частными производными. Казань: Казанское математическое общество, 2001. 226 с.
  7. Мусхелишвили Н. И. Некоторые основные задачи математической теории упругости. М.: Наука, 1966. 707 с.
  8. Андреев А. А., Яковлева Ю. О. Задача Коши для уравнения гиперболического типа порядка n общего вида с некратными характеристиками // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2016. Т. 20, № 2. С. 241-248. doi: 10.14498/vsgtu1490.
  9. Петровский И. Г. Избранные труды. Системы уравнений с частными производными. Алгебраическая геометрия. М.: Наука, 1986. 500 с.
  10. Корзюк В. И., Чеб Е. С., Ле Тхи Тху Решение смешанной задачи для биволнового уравнения методом характеристик // Тр. Ин-та матем., 2010. Т. 18, № 2. С. 36-54.
  11. Яковлева Ю. О. Аналог формулы Даламбера для гиперболического уравнения третьего порядка с некратными характеристиками // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2012. № 1(26). С. 247-250. doi: 10.14498/vsgtu1028.
  12. Андреев А. А., Яковлева Ю. О. Задача Коши для системы уравнений гиперболического типа четвертого порядка общего вида с некратными характеристиками // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2014. № 4(37). С. 7-15. doi: 10.14498/vsgtu1349.
  13. Андреев А. А.,Яковлева Ю. О. Характеристическая задача для одного гиперболического дифференциального уравнения третьего порядка с некратными характеристиками // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика, 2013. Т. 13, № 1(2). С. 3-6.
  14. Тихонов А. Н., Самарский А. А. Уравнения математической физики. М.: Наука, 1972. 736 с.
  15. Bellman R. Introduction to matrix analysis: 2nd ed., Reprint of the 1970 Orig. / Classics in Applied Mathematics. vol. 19. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1997. xxviii+403 pp.
  16. Гантмахер Ф. Р. Теория матриц. М.: Наука, 1988. 549 с.
  17. Holmgren E. Sur les systèmes linéaires aux dérivées partielles du premier ordre deux variables indépendantes à caractéristiques réelles et distinetes // Arkiv f. Mat., Astr. och Fys., 1909. vol. 5, no. 1. 13 pp. (In Swedish)

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2017

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).