Краевая задача для гиперболического уравнения третьего порядка с вырождением порядка внутри области

  • Авторы: Макаова Р.Х.1
  • Учреждения:
    1. Институт прикладной математики и автоматизации - филиал Федерального государственного бюджетного научного учреждения «Федеральный научный центр «Кабардино-Балкарский научный центр Российской академии наук»
  • Выпуск: Том 21, № 4 (2017)
  • Страницы: 651-664
  • Раздел: Статьи
  • URL: https://ogarev-online.ru/1991-8615/article/view/20566
  • DOI: https://doi.org/10.14498/vsgtu1574
  • ID: 20566

Цитировать

Полный текст

Аннотация

Исследуется краевая задача для гиперболического уравнения третьего порядка с вырождением типа внутри смешанной области. Рассматриваемое уравнение в положительной части области совпадет с уравнением Аллера, которое является уравнением псевдопараболического типа. А в отрицательной части области - с вырождающимся гиперболическим уравнением первого рода, частным случаем которого является уравнение Бицадзе-Лыкова. Доказана теорема существования и единственности решения. Единственность решения задачи доказана с помощью метода Трикоми. Из функциональных соотношений, принесенных на линию вырождения порядка из положительной и отрицательной частей области, приходим к уравнению Вольтерра второго рода типа свертки относительно следа производной искомого решения. Путем применения метода интегрального преобразования Лапласа решение интегрального уравнения находится в явном виде. Далее решение исследуемой задачи выписывается в явном виде как решение второй краевой задачи для уравнения Аллера в положительной части области и как решение задачи Коши для вырождающегося гиперболического уравнения первого рода в отрицательной части области.

Об авторах

Рузанна Хасанбиевна Макаова

Институт прикладной математики и автоматизации - филиал Федерального государственного бюджетного научного учреждения «Федеральный научный центр «Кабардино-Балкарский научный центр Российской академии наук»

Email: makaova.ruzanna@mail.ru
http://orcid.org/0000-0003-4095-2332 младший научный сотрудник; отд. уравнений смешанного типа Россия, 360000, Нальчик, ул. Шортанова, 89 а

Список литературы

  1. Hallaire M. Potential efficace de l’eau dans le sol en régime de dessèchement / Assemblée générale de Berkeley=General Assembly of Berkeley, Publ. no. 62 (August 1963). Gentbrugge, 1963. pp. 114-122, http://hydrologie.org/redbooks/a062/iahs_062_0114.pdf.
  2. Смирнов М. М. Вырождающиеся гиперболические уравнения. Минск: Вышэйшая школа, 1977. 158 с.
  3. Showalter R.E., Ting T.W. Pseudoparabolic partial differential equations // SIAM J. Math. Anal., 1970. vol. 1, no. 1. pp. 1-26. doi: 10.1137/0501001.
  4. Чудновский А. Ф. Теплофизика почв. М.: Наука, 1976. 352 с.
  5. Нахушев А. М. Об одном классе нагруженных уравнений в частных производных дробного порядка // Доклады Адыгской (Черкесской) Международной академии наук, 2012. Т. 14, № 1. С. 51-57.
  6. Баренблатт Г. И., Желтов И. П., Кочина И. Н. Об основных представлениях теории фильтрации однородных жидкостей в трещиноватых породах // ПММ, 1960. Т. 24, № 5. С. 852-864.
  7. Coleman B. D., Duffin R. J., Mizel V. J. IInstability, uniqueness, and nonexistence theorems for the equation $u_t = u_{xx} - u_{xtx}$ on a strip // Arch. Rat. Mech. Anal., 1965. vol. 19, no. 2. pp. 100-116. doi: 10.1007/BF00282277.
  8. Colton D. Pseudoparabolic equations in one space variable // J. Differ. Equations, 1972. vol. 12, no. 3. pp. 559-565. doi: 10.1016/0022-0396(72)90025-3.
  9. Янгарбер В. А. О смешанной задаче для модифицированного уравнения влагопереноса // ПМТФ, 1967. № 1. С. 91-96.
  10. Шхануков М. Х. О некоторых краевых задачах для уравнения третьего порядка, возникающих при моделировании фильтрации жидкости в пористых средах // Дифференц. уравнения, 1982. Т. 18, № 4. С. 689-699.
  11. Водахова В. А. Краевая задача с нелокальным условием А. М. Нахушева для одного псевдопараболического уравнения влагопереноса // Дифференц. уравнения, 1982. Т. 18, № 2. С. 280-285.
  12. Кожанов А. И. Об одной нелокальной краевой задаче с переменными коэффициентами для уравнений теплопроводности и Аллера // Дифференц. уравнения, 2004. Т. 40, № 6. С. 763-774.
  13. Нахушев А. М. Уравнения математической биологии. М.: Высшая школа, 1995. 301 с.
  14. Репин О. А. Аналог задачи Нахушева для уравнения Бицадзе-Лыкова // Дифференц. уравнения, 2002. Т. 38, № 10. С. 1412-1417.
  15. Репин О. А., Кумыкова С. К. Нелокальная задача для уравнения Бицадзе-Лыкова // Изв. вузов. Матем., 2010. № 3. С. 28-35.
  16. Нахушев А. М. Дробное исчисление и его применение. М.: Физматлит, 2003. 272 с.
  17. Кальменов Т. Ш. Критерий единственности решения задачи Дарбу для одного вырождающегося гиперболического уравнения // Дифференц. уравнения, 1971. Т. 7, № 1. С. 178-181.
  18. Кальменов Т. Ш. О задаче Дарбу для одного вырождающегося уравнения // Дифференц. уравнения, 1974. Т. 10, № 1. С. 59-68.
  19. Пулькина Л. С. Об одной нелокальной задаче для вырождающегося гиперболического уравнения // Матем. заметки, 1992. Т. 51, № 3. С. 91-96.
  20. Репин О. А., Кумыкова С. К. Задача со смещением для вырождающегося внутри области гиперболического уравнения // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2014. № 1(34). С. 37-47. doi: 10.14498/vsgtu1280.
  21. Балкизов Ж. А. Первая краевая задача для вырождающегося внутри области гиперболического уравнения // Владикавк. матем. журн., 2016. Т. 18, № 2. С. 19-30.
  22. Балкизов Ж. А. Краевая задача для вырождающегося внутри области гиперболического уравнения // Известия вузов. Северо-Кавказский регион. Серия: Естественные науки, 2016. № 1. С. 5-10. doi: 10.18522/0321-3005-2016-1-5-10.
  23. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. Т. 1. М.: Физматлит, 2003. 680 с.
  24. Балкизов Ж. А. Первая краевая задача для уравнения параболо-гиперболического типа третьего порядка с вырождением типа и порядка в области гиперболичности // Уфимск. матем. журн., 2017. Т. 9, № 2. С. 25-39.
  25. Макаова Р.Х. Вторая краевая задача для обобщенного уравнения Аллера с дробной производной Римана-Лиувилля // Доклады Адыгской (Черкесской) Международной академии наук, 2015. Т. 17, № 3. С. 35-38.
  26. Wright E. M. The generalized Bessel function of order greater than one // Quart. J. Math. Oxford Ser., 1940. vol. os-11, no. 1. pp. 36-48. doi: 10.1093/qmath/os-11.1.36.
  27. Псху А. В. Начальная задача для линейного обыкновенного дифференциального уравнения дробного порядка // Матем. сб., 2011. Т. 202, № 4. С. 111-122. doi: 10.4213/sm7645.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2017

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).