Уравнения Янга-Миллса на 4-многообразиях конформной связности без кручения с различными сигнатурами


Цитировать

Полный текст

Аннотация

Исследуются пространства конформной связности без кручения размерности 4, матрица связности которых удовлетворяет уравнениям Янга-Миллса. Здесь мы обобщаем и усиливаем результаты, полученные нами в предыдущих статьях, где угловая метрика этих пространств имела сигнатуру Минковского. Обобщение состоит в том, что здесь мы исследуем пространства всех возможных сигнатур метрики, а усиление связано с тем, что дополнительное внимание уделяется вычислению матрицы кривизны и установлению свойств ее компонент. Показано, что уравнения Янга-Миллса на 4-многообразиях конформной связности без кручения при произвольной сигнатуре угловой метрики сводятся к уравнениям Эйнштейна, уравнениям Максвелла и равенству тензора Баха угловой метрики и тензора энергии-импульса кососимметричного тензора заряда. Доказано, что в случае равенства нулю тензора Вейля уравнения Янга-Миллса имеют только автодуальные или антиавтодуальные решения, т.е. матрица кривизны конформной связности состоит из автодуальных или антиавтодуальных внешних 2-форм. При сигнатуре Минковского (анти)автодуальные внешние 2-формы могут быть лишь нулевыми. Вычислены компоненты матрицы кривизны в случае, когда угловая метрика произвольной сигнатуры является эйнштейновой, а связность удовлетворяет уравнениям Янга-Миллса. В евклидовом и псевдоевклидовом 4-пространствах приведены некоторые частные автодуальные и антиавтодуальные решения уравнений Максвелла, к которым сводятся в данном случае все уравнения Янга-Миллса.

Об авторах

Леонид Николаевич Кривоносов

Нижегородский государственный технический университет им. Р. Е. Алексеева

Email: l.n.krivonosov@gmail.com
http://orcid.org/0000-0002-3533-9595 кандидат физико-математических наук, доцент; доцент; каф. прикладной математики Россия, 603600, Нижний Новгород, ул. Минина, 24

Вячеслав Анатольевич Лукьянов

Нижегородский государственный технический университет им. Р. Е. Алексеева

Email: oxyzt@ya.ru
http://orcid.org/0000-0002-7294-0232 кандидат физико-математических наук; доцент; каф. прикладной математики Россия, 603600, Нижний Новгород, ул. Минина, 24

Список литературы

  1. Картан Э. Пространства аффинной, проективной и конформной связности. Казань: Казан. ун-т, 1962. 210 с.
  2. Кривоносов Л. Н., Лукьянов В. А. Связь уравнений Янга-Миллса с уравнениями Эйнштейна и Максвелла // Журн. СФУ. Сер. Матем. и физ., 2009. Т. 2, № 4. С. 432-448.
  3. Atiyah M. F., Hitchin N. J., Singer I. M. Self-duality in four-dimensional Riemannian geometry // Proc. Roy. Soc. London. Series A, 1978. vol. 362, no. 1711. pp. 425-461.doi: 10.1098/rspa.1978.0143.
  4. Singerland I. M., Thorpe J. A. The curvature of 4-dimensional Einstein spaces / Global Analysis: Papers in Honor of K. Kodaira (PMS-29). Princeton: Princeton University Press, 2015. pp. 355-365. doi: 10.1515/9781400871230-021.
  5. Sucheta Koshti, Naresh Dadhich The General Self-dual solution of the Einstein Equations, 1994, arXiv: gr-qc/9409046.
  6. Ландау Л. Д., Лифшиц Е. М. Теория поля. М.: Наука, 1973. 504 с.
  7. Фиников С. П. Метод внешних форм Картана в дифференциальной геометрии. М.: ГИТТЛ, 1948. 432 с.
  8. Кривоносов Л. Н., Лукьянов В. А. Уравнения Эйнштейна на четырехмерном многообразии конформной связности без кручения // Журн. СФУ. Сер. Матем. и физ., 2012. Т. 5, № 3. С. 393-408.
  9. Korzyjński M., Levandowski J. The Normal Conformal Cartan Connection and the Bach Tensor // Class. Quant. Grav., 2003. vol. 20, no. 16. pp. 3745-3764, arXiv: gr-qc/0301096v3. doi: 10.1088/0264-9381/20/16/314.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2017

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).