Mathematical modelling of tissue formation on the basis of ordinary differential equations
- Authors: Nazarov M.N1
-
Affiliations:
- National Research University of Electronic Technology
- Issue: Vol 21, No 3 (2017)
- Pages: 581-594
- Section: Articles
- URL: https://ogarev-online.ru/1991-8615/article/view/20562
- DOI: https://doi.org/10.14498/vsgtu1535
- ID: 20562
Cite item
Full Text
Abstract
A mathematical model is proposed for describing the population dynamics of cellular clusters on the basis of systems of the first-order ordinary differential equations. The main requirement for the construction of model equations was to obtain a formal biological justification for their derivation, as well as proof of their correctness. In addition, for all the parameters involved in the model equations, the presence of biological meaning was guaranteed, as well as the possibility of evaluating them either during the experiment or by using models of intracellular biochemistry. In the desired model the intercellular exchange of a special signal molecules was chosen as the main mechanism for coordination of the tissue growth and new types selection during cell division. For simplicity, all signalling molecules that can create cells of the same type were not considered separately in the model, but were instead combined in a single complex of molecules: a ‘generalized signal’. Such an approach allows us to eventually assign signals as a functions of cell types and introduce their effects in the form of matrices in the models, where the rows are responsible for the types of cells receiving the signals, and the columns for the types of cells emitting signals.
Full Text
##article.viewOnOriginalSite##About the authors
Maxim N Nazarov
National Research University of Electronic Technology
Email: nazarov-maximilian@yandex.ru
Senior Lecturer; Dept. of Higher Mathematics-1 1, Shokin square, Zelenograd, Moscow, 124498, Russian Federation
References
- Urdy S. Principles of morphogenesis: the contribution of cellular automata models (Book Review) // Acta Zoologica, 2009. vol. 90, no. 2. pp. 205-208. doi: 10.1111/j.1463-6395.2008.00333.x.
- Palsson E. A three-dimensional model of cell movement in multicellular systems // Future Generation Computer Systems, 2001. vol. 17, no. 7. pp. 835-852. doi: 10.1016/S0167-739X(00)00062-5.
- Drasdo D., Höhme S. A single-cell-based model of tumor growth in vitro: monolayers and spheroids // Physical Biology, 2005. vol. 2, no. 3. pp. 133-147. doi: 10.1088/1478-3975/2/3/001.
- Drasdo D. Center-based Single-cell Models: An Approach to Multi-cellular Organization Based on a Conceptual Analogy to Colloidal Particles / Single-Cell-Based Models in Biology and Medicine / Mathematics and Biosciences in Interaction. Basel: Birkhäuser, 2007. pp. 171-196. doi: 10.1007/978-3-7643-8123-3_8.
- Bauer A. L., Jackson T. L., Jiang Y. A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis // Biophysical Journal, 2007. vol. 92, no. 9. pp. 3105-3121. doi: 10.1529/biophysj.106.101501.
- Hirashima T., Iwasa Y., Morishita Y. Dynamic modeling of branching morphogenesis of ureteric bud in early kidney development // Journal of Theoretical Biology, 2009. vol. 259, no. 1. pp. 58-66. doi: 10.1016/j.jtbi.2009.03.017.
- Szabó A., Czirók A. The Role of Cell-Cell Adhesion in the Formation of Multicellular Sprouts // Math. Model. Nat. Phenom., 2010. vol. 5, no. 1. pp. 106-122. doi: 10.1051/mmnp/20105105.
- Taber L. A. Towards a unified theory for morphomechanics // Philos. Trans. Ser. A, 2009. vol. 367, no. 1902. pp. 3555-3583. doi: 10.1098/rsta.2009.0100.
- Wyczalkowski M. A., Chen Z., Filas B. A., Varner V. D., Taber L. A. Computational models for mechanics of morphogenesis // Birth Defects Res. C, 2012. vol. 96, no. 2. pp. 132-152. doi: 10.1002/bdrc.21013.
- Forgacs G., Foty R. A., Shafrir Y., Steinberg M. S. Viscoelastic properties of living embryonic tissues: a quantitative study // Biophysical Journal, 1998. vol. 74, no. 5. pp. 2227-2234. doi: 10.1016/S0006-3495(98)77932-9.
- Ranft J., Basan M., Elgeti J., Joanny J.-F., Prost J., Jülicher F. Fluidization of tissues by cell division and apoptosis // Proc. Natl. Acad. Sci. USA, 2010. vol. 107, no. 49. pp. 20863-20868. doi: 10.1073/pnas.1011086107.
- Dillon R., Othmer H. G. A Mathematical Model for Outgrowth and Spatial Patterning of the Vertebrate Limb Bud // Journal of Theoretical Biology, 1999. vol. 197, no. 3. pp. 295-330. doi: 10.1006/jtbi.1998.0876.
- Keller E. F., Segel L. A. Initiation of slime mold aggregation viewed as an instability // Journal of Theoretical Biology, 1970. vol. 26, no. 3. pp. 399-415. doi: 10.1016/0022-5193(70)90092-5.
- Tanaka S. Simulation Frameworks for Morphogenetic Problems // Computation, 2015. vol. 3, no. 2. pp. 197-221. doi: 10.3390/computation3020197.
- Brauer F., Castillo-Chavez C. Mathematical Models in Population Biology and Epidemiology / Texts in Applied Mathematics. vol. 40. New York: Springer Verlag, 2012. xxiv+508 pp. doi: 10.1007/978-1-4614-1686-9.
- Назаров М. Н. Моделирование роста ткани с учётом возможности внешнего воздействия на её форму // ПДМ, 2013. № 4(22). С. 103-113.
- Назаров М. Н. Базовая математическая модель для описания процессов регуляции биосинтеза белков // Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 2016. Т. 26, № 4. С. 515-524. doi: 10.20537/vm160406.
- Finch-Edmondson M., Sudol M. Framework to function: mechanosensitive regulators of gene transcription // Cellular and Molecular Biology Letters, 2016. vol. 21, 28. 23 pp. doi: 10.1186/s11658-016-0028-7.
Supplementary files

