Спектральные характеристики нелокальной задачи для двух линейных систем дифференциальных уравнений в частных производных


Цитировать

Полный текст

Аннотация

Изучается граничная задача для линейной системы дифференциальных уравнений, записанная в виде дифференциально-операторного уравнения $$ aD_t u(t)+bBu(t)=f(t) $$ с нелокальными граничными условиями по $t$. Такую краевую задачу для линейной системы дифференциальных уравнений (в том числе и в частных производных) мы условимся называть нелокальной. Цель работы состоит в изучении спектральных характеристик дифференциальных операторов, порожденных нелокальной задачей для двух линейных систем дифференциальных уравнений в частных производных, рассматриваемых в ограниченной области конечномерного евклидова пространства.

Об авторах

Дмитрий Васильевич Корниенко

Елецкий государственный университет имени И. А. Бунина

Email: dmkornienko@mail.ru
кандидат физико-математических наук, доцент; доцент; каф. прикладной математики и информатики Россия, 399770, Елец, Липецкая обл., ул. Коммунаров, 28

Список литературы

  1. Дезин А. А. Общие вопросы теории граничных задач. М.: Наука, 1980. 208 с.
  2. Дезин А. А. Дифференциально-операторные уравнения. Метод модельных операторов в теории граничных задач / Тр. МИАН. Т. 229 / ред. В. С. Владимиров, Е. Ф. Мищенко. М.: Наука, 2000. 176 с.
  3. Михайлов В. П. О базисах Рисса в L2 (0, 1) // Докл. АН СССР, 1962. Т. 144, № 5. С. 981-984.
  4. Бицадзе А. В. О единственности решения задачи Дирихле для эллиптических уравнений с частными производными // УМН, 1948. Т. 3, № 6(28). С. 211-212.
  5. Бицадзе А. В. Краевые задачи для эллиптических уравнений второго порядка. М.: Наука, 1966. 203 с.
  6. Вишик М. И. О сильно эллиптических системах дифференциальных уравнений // Матем. сб., 1951. Т. 29(71), № 3. С. 615-676.
  7. Солдатов А. П., Митин С. П. Об одном классе сильно эллиптических систем // Дифференц. уравнения, 1997. Т. 33, № 8. С. 1118-1122.
  8. Солдатов А. П. О первой и второй краевых задачах для эллиптических систем на плоскости // Дифференц. уравнения, 2003. Т. 39, № 5. С. 674-686.
  9. Kaczmarz S., Steinhaus H. Theorie der Orthogonalreihen / Monografie Matematyczne. vol. 6. New York: Chelsea Publ., 1951. viii+296 pp.
  10. Садовничий В. А. Теория операторов. М.: Высш. шк., 1999. 368 с.
  11. Корниенко Д. В. Об одной спектральной задаче для двух гиперболических систем уравнений // Дифференц. уравнения, 2006. Т. 42, № 1. С. 91-100.
  12. Корниенко Д. В. О спектре задачи Дирихле для систем дифференциально-операторных уравнений // Дифференц. уравнения, 2006. Т. 42, № 8. С. 1063-1071.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2017

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).