Delta-problems for the generalized Euler-Darboux equation


Cite item

Full Text

Abstract

Degenerate hyperbolic equations are dealing with many important issues for applied nature. While a variety of degenerate equations and boundary conditions, successfully matched to these differential equation, most in the characteristic coordinates reduced to Euler-Darboux one. Some boundary value problems, in particular Cauchy problem, for the specified equation demanded the introduction of special classes in which formulae are simple and can be used to meet the new challenges, including Delta-problems in squares that contain singularity line for equation coefficients with data on adjacent or parallel sides of the square. In this short communication the generalized Euler-Darboux equation with negative parameters in the rectangular region is considered.

About the authors

Irina N Rodionova

Samara National Research University

Cand. Phys. & Math. Sci.; Associate Professor; Dept. of Mathematics & Business Informatics 34, Moskovskoye shosse, Samara, 443086, Russian Federation

Vyacheslav M Dolgopolov

Samara National Research University

Email: paskal1940@mail.ru
Cand. Phys. & Math. Sci.; Associate Professor; Lab. of Mathematical Physics 34, Moskovskoye shosse, Samara, 443086, Russian Federation

Mikhail V Dolgopolov

Samara National Research University

Email: volopoglodahsim@mail.ru
Cand. Phys. & Math. Sci.; Associate Professor; Dept. of General and Theoretical Physics; Head of Laboratory; Lab. of Mathematical Physics 34, Moskovskoye shosse, Samara, 443086, Russian Federation

References

  1. Kal’menov T. Sh. The characteristic Cauchy problem for a certain class of degenerate hyperbolic equations, Differ. Uravn., 1973, vol. 9, no. 1, pp. 84-96 (In Russian).
  2. Volkodavov V. F., Andreev A. A. Two boundary value problems for a certain hyperbolic equation, Volzh. mat. sb. Kuibyshev, 1973, pp. 102-112 (In Russian).
  3. Nakhushev A. M. On the theory of boundary value problems for degenerate hyperbolic equations, Soobshch. Akad. Nauk Gruz. SSR, 1975, vol. 77, pp. 545-548 (In Russian).
  4. Kumykova S. K. A boundary value problem for a degenerate hyperbolic equation in a characteristic crescent, Differ. Uravn., 1979, vol. 15, no. 1, pp. 79-91 (In Russian).
  5. Volkodavov V. F., Kulikova N. A. The problem ∆2 for an equation of hyperbolic type with conjugation of the limits of fractional-order derivatives, Differ. Equ., 2003, vol. 39, no. 12, pp. 1797-1801. doi: 10.1023/B:DIEQ.0000023560.02344.15.
  6. Zainullina G. N. The ∆2 problem for the Euler-Poisson-Darboux equation in the class of unbounded functions, Russ. Math., 2003, vol. 47, no. 3, pp. 13-17.
  7. Volkodavov V. F., Andreev A. A. Kraevye zadachi dlia uravneniia Eilera-Darbu-Puassona [Boundary value problems for the Euler-Darboux-Poisson equations]. Kuibyshev, Kuibyshev. gos. ped. in-t, 1984, 76 pp. (In Russian)
  8. Dolgopolov V. M., Dolgopolov M. V., Rodionova I. N. Construction of special classes of solutions for some differential equations of hyperbolic type, Dokl. Math., 2009, vol. 80, no. 3, pp. 860-866. doi: 10.1134/S1064562409060209.
  9. Dolgopolov M. V., Rodionova I. N. Problems involving equations of hyperbolic type in the plane or three-dimensional space with conjugation conditions on a characteristic, Izv. Math., 2011, vol. 75, no. 4, pp. 681-689. doi: 10.1070/IM2011v075n04ABEH002549.
  10. Dolgopolov M. V., Rodionova I. N., Dolgopolov V. M. On one nonlocal problem for the Euler-Darboux equation, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2016, vol. 20, no. 2, pp. 259-275 (In Russian). doi: 10.14498/vsgtu1487.
  11. Gakhov F. D. Boundary value problems. New York, Dover Publ., 1990, xxii+561 pp.
  12. Volovich I. V., Groshev O. V., Gusev N. A., Kuryanovich E. A. On Solutions to the Wave Equation on a Non-globally Hyperbolic Manifold, Proc. Steklov Inst. Math., 2009, vol. 265, no. 1, pp. 262-275. doi: 10.1134/S0081543809020242.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).