Mesoscopic models for definition of the large-scale elastic properties of the soft magnetic elastomers


Cite item

Full Text

Abstract

A pair of magnetizing particles embedded in a cylinder made of a highelasticity (hyperelastic) material is considered as a model of a mesoscopic structure element of a soft magnetic elastomer. In the presence of the magnetic field particles magnetize and the force interaction is arisen between them. Particles change position inside the elastomer matrix as the elastic resistance allows it. Equilibrium position of the particles inside the sample is determined by the balance of magnetic and elastic forces and corresponds to the minimum of total energy of the system. In its calculation both the non-linearity and heterogeneity of the magnetization of the particles and non-linearity of the elastic properties of the elastomer have been taken into account. This brings us to the real magnetorheological composite, that is a soft elastomer filled with a micron ferromagnetic particles. The considered system exhibits bistability: increase and decrease of the applied magnetic field, leads to change of the distance between the particles in hysteretic manner, from a few radii to the tight contact (collapse). This behavior significantly affects the ability of a mesoscopic element to resist external load. Collapse of the particles inside it by a magnetic field or compressive load causes sharp increase of stiffness. The dependence of mechanical characteristics of the system on the strength of an applied magnetic field is studied for the elements of different compliance. This dependence also has a hysteresis. Despite its simplicity, the model in a generally correct way describes the field-induced changes of the internal structure of soft magnetic elastomers. The obtained results are used for qualitative analysis of the macroscopic magnetomechanics of the composite, this is done with the aid of a homogenisation procedure based of Voigt’s hypothesis. The obtained dependence of the magnetic stiffness of soft magnetic elastomer on the external magnetic field agrees qualitatively with the published experimental results.

About the authors

Anastasiya M Biller

Institute of Continuous Media Mechanics, Ural Branch of RAS

Email: kam@icmm.ru
Juniour Researcher; Physics and Mechanics of Soft Matter Laboratory 1, Akad. Korolyova st., Perm, 614013, Russian Federation

Oleg V Stolbov

Institute of Continuous Media Mechanics, Ural Branch of RAS

Email: sov@icmm.ru
Cand. Phys. & Math. Sci.; Researcher; Physics and Mechanics of Soft Matter Laboratory 1, Akad. Korolyova st., Perm, 614013, Russian Federation

References

  1. Stolbov O. V., Raikher Yu. L., Balasoiu M. Modelling of magnetodipolar striction in soft magnetic elastomers // Soft Matter, 2011. vol. 7, no. 18. pp. 8484-8487. doi: 10.1039/c1sm05714f.
  2. Ivaneyko D., Toshchevikov V. P., Saphiannikova M., Heinrich G. Effects of particle distribution on mechanical properties of magneto-sensitive elastomers in a homogeneous magnetic field // Condensed Matter Physics, 2012. vol. 15, no. 3. pp. 33601:1-12, arXiv: 1210.1401 [cond-mat.soft]. doi: 10.5488/cmp.15.33601.
  3. Han Y., Hong W., Faidley L. E. Field-stiffening effect of magneto-rheological elastomers // International Journal of Solids and Structures, 2013. vol. 50, no. 14-15. pp. 2281-2288. doi: 10.1016/j.ijsolstr.2013.03.030.
  4. Biller A. M., Stolbov O. V., Raikher Yu. L. Modeling of particle interactions in magnetorheological elastomers // J. Appl. Phys., 2014. vol. 116, no. 11, 114904. 8. doi: 10.1063/1.4895980.
  5. Biller A. M., Stolbov O. V., Raikher Yu. L. Mesoscopic magnetomechanical hysteresis in a magnetorheological elastomer // Phys. Rev. E, 2015. vol. 92, no. 2, 023202. 9. doi: 10.1103/physreve.92.023202.
  6. Биллер А. М., Столбов О. В., Райхер Ю. Л. Бистабильное магнитомеханическое поведение ферромагнитных частиц в эластомерной матрице // Вычисл. мех. сплош. Сред, 2015. Т. 8, № 3. С. 273-288. doi: 10.7242/1999-6691/2015.8.3.23.
  7. Bozorth R. M. Ferromagnetism. Piscataway, N.J.: Wiley-IEEE Press, 1993, xvii+969 pp. doi: 10.1109/9780470544624.
  8. Oswald P. Rheophysics: The Deformation and Flow of Matter. New York: Cambridge University Press, 2009. 624 pp.
  9. Stepanov G. V., Abramchuk S. S., Grishin D. A., Nikitin L. V., Kramarenko E. Yu., Khokhlov A. R. Effect of a homogeneous magnetic field on the viscoelastic behavior of magnetic elastomers // Polymer, 2007. vol. 48, no. 2. pp. 488-495. doi: 10.1016/j.polymer.2006.11.044.
  10. Ponte Castañeda P., Galipeau E. Homogenization-based constitutive models for magnetorheological elastomers at finite strain // J. Mech. Phys. Solids, 2011. vol. 59, no. 2. pp. 194-215. doi: 10.1016/j.jmps.2010.11.004.
  11. Menzel A. Bridging from particle to macroscopic scales in uniaxial magnetic gels // J. Chem. Phys., 2014. vol. 141, no. 19, 194907. 13. doi: 10.1063/1.4901275.
  12. Abramchuk S. S., Grishin D. A., Kramarenko E. Yu., Stepanov G. V., Khokhlov A. R. Effect of a homogeneous magnetic field on the mechanical behavior of soft magnetic elastomers under compression // Polym. Sci. Ser. A, 2006. vol. 48, no. 2. pp. 138-145. doi: 10.1134/s0965545x06020064.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).