О нелокальной задаче с дробной производной Римана-Лиувилля для уравнения смешанного типа


Цитировать

Полный текст

Аннотация

Для уравнения с частной дробной производной Римана-Лиувилля исследована однозначная разрешимость задачи с обобщенным оператором дробного интегро-дифференцирования в краевом условии. Теорема единственности решения поставленной задачи доказана на основании принципа экстремума для нелокального параболического уравнения и принципа экстремума для операторов дробного дифференцирования в смысле Римана-Лиувилля. Доказательство существования решения эквивалентно сводится к вопросу разрешимости дифференциального уравнения дробного порядка. Решение рассматриваемой задачи получено в явном виде.

Об авторах

Анна Валерьевна Тарасенко

Самарский государственный технический университет

Email: tarasenko.a.v@mail.ru
кандидат физико-математических наук, доцент; доцент; каф. высшей математики АСИ Россия, 443100, Самара, ул. Молодогвардейская, 244

Ирина Петровна Егорова

Самарский государственный технический университет

Email: ira.egorova81@yandex.ru
кандидат физико-математических наук, доцент; доцент; каф. высшей математики АСИ Россия, 443100, Самара, ул. Молодогвардейская, 244

Список литературы

  1. Самко С. Г., Килбас А. А., Маричев О. И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника, 1987. 688 с.
  2. Saigo M. A remark on integral operators involving the Gauss hypergeometric function // Math. Rep. Coll. Gen. Educ., Kyushu Univ., 1978. vol. 11, no. 2. pp. 135-143.
  3. Килбас А. А., Репин О. А. Аналог задачи Бицадзе-Самарского для уравнения смешанного типа с дробной производной // Дифференц. уравнения, 2003. Т. 39, № 5. С. 638-644.
  4. Геккиева С. Х. Аналог задачи Трикоми для уравнения смешанного типа с дробной производной // Известия КБНЦ РАН, 2001. № 2(7). С. 78-80.
  5. Килбас А. А., Репин О. А. Аналог задачи Трикоми для дифференциального уравнения с частными производными, содержащего уравнение диффузии дробного порядка // Докл. АМАН, 2010. Т. 12, № 1. С. 31-39.
  6. Псху А. В. Уравнения в частных производных дробного порядка. М.: Наука, 2005. 199 с.
  7. Смирнов М. М. Вырождающиеся эллиптические и гиперболические уравнения. М.: Наука, 1966. 292 с.
  8. Нахушев А. М. Дробное исчисление его применение. М.: Физматлит, 2009. 272 с.
  9. Нахушева В. А. Дифференциальные уравнения математических моделей нелокальных процессов. М.: Наука, 2006. 173 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2017

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).