Задача Дирихле для уравнения смешанного типа с сильным характеристическим вырождением и сингулярным коэффициентом


Цитировать

Полный текст

Аннотация

Для уравнения смешанного типа второго рода с сингулярным коэффициентом исследована первая граничная задача в прямоугольной области. Для исследования поставленной задачи используются методы спектрального анализа. Предварительно решается одномерная спектральная задача. Установлен критерий единственности решения задачи. Единственность решения задачи доказывается на основании полноты системы собственных функций соответствующей одномерной спектральной задачи. Решение задачи построено в явном виде как сумма ряда Фурье-Бесселя. При обосновании равномерной сходимости построенного ряда возникает проблема малых знаменателей. В связи с этим найдена оценка отделенности от нуля малого знаменателя с соответствующей асимптотикой. Полученная оценка позволила доказать сходимость ряда и его производных до второго порядка включительно, а также теорему существования в классе регулярных решений данного уравнения.

Об авторах

Римма Марселевна Сафина

Поволжская государственная академия физической культуры, спорта и туризма

Email: rimma77705@mail.ru
старший преподаватель; каф. физико-математических дисциплин и информационных технологий Россия, 420010, Казань, Деревня Универсиады, 35

Список литературы

  1. Франкль Ф. И. О задачах С. А. Чаплыгина для смешанных до- и сверхзвуковых течений // Изв. АН СССР. Сер. матем., 1945. Т. 9, № 2. С. 121-143.
  2. Бицадзе А. В. Некорректность задачи Дирихле для уравнений смешанного типа // ДАН СССР, 1953. Т. 122, № 2. С. 167-170.
  3. Шабат Б. В. Примеры решения задачи Дирихле для уравнения смешанного типа // ДАН СССР, 1957. Т. 112, № 3. С. 386-389.
  4. Вахания Н. Н. Об одной особой задаче для уравнения смешанного типа // Тр. АН Груз. ССР, 1963. Т. 3. С. 69-80.
  5. Cannon J. R. A Dirichlet problem for an equation of mixed type with a discontinuous coefficient // Annali di Matematica, 1963. vol. 61, no. 1. pp. 371-377. doi: 10.1007/BF02410656.
  6. Нахушев А. М. Критерий единственности задачи Дирихле для уравнения смешанного типа в цилиндрической области // Дифференц. уравнения, 1970. Т. 6, № 1. С. 190-191.
  7. Хачев М. М. Задача Дирихле для уравнения Трикоми в прямоугольнике // Дифференц. уравнения, 1975. Т. 11, № 1. С. 151-160.
  8. Хачев М. М. paper О задаче Дирихле для одного уравнения смешанного типа // Дифференц. уравнения, 1976. Т. 12, № 1. С. 137-143.
  9. Солдатов А. П. Задача типа Дирихле для уравнения Лаврентьева-Бицадзе. I. Теоремы единственности // Докл. РАН, 1993. Т. 332, № 6. С. 696-698.
  10. Солдатов А. П. Задача типа Дирихле для уравнения Лаврентьева-Бицадзе. II. Теоремы существования // Докл. РАН, 1993. Т. 333, № 1. С. 16-18.
  11. Хачев М. М. Первая краевая задача для линейных уравнений смешанного типа. Нальчик: Эльбрус, 1998. 168 с.
  12. Сохадзе Р. С. Первая краевая задача для уравнения смешанного типа с весовыми условиями склеивания вдоль линии параболического вырождения // Дифференц. уравнения, 1981. Т. 17, № 1. С. 150-156.
  13. Сохадзе Р. С. О первой краевой задаче для уравнения смешанного типа в прямоугольнике // Дифференц. уравнения, 1983. Т. 19, № 1. С. 127-134.
  14. Сабитов К. Б. Задача Дирихле для уравнений смешанного типа в прямоугольной области // Докл. РАН, 2007. Т. 413, № 1. С. 23-26.
  15. Сабитов К. Б., Сулейманова А. Х. Задача Дирихле для уравнения смешанного типа второго рода в прямоугольной области // Изв. вузов. Матем., 2007. № 4. С. 45-53.
  16. Сабитов К. Б., Сулейманова А. Х. Задача Дирихле для уравнения смешанного типа с характеристическим вырождением в прямоугольной области // Изв. вузов. Матем., 2009. № 11. С. 43-52.
  17. Сабитов К. Б., Вагапова Э. В. Задача Дирихле для уравнения смешанного типа с двумя линиями вырождения в прямоугольной области // Дифференц. уравнения, 2013. Т. 49, № 1. С. 68-78.
  18. Хайруллин Р. С. К задаче Дирихле для уравнения смешанного типа второго рода с сильным вырождением // Дифференц. уравнения, 2013. Т. 49, № 4. С. 528-534. doi: 10.1134/S0374064113040122.
  19. Сафина Р. М. Задача Дирихле для уравнения Пулькина в прямоугольной области // Вестн. СамГУ. Естественнонаучн. сер., 2014. № 10(121). С. 91-101.
  20. Сафина Р. М. Задача Келдыша для уравнения смешанного типа второго рода с оператором Бесселя // Дифференц. уравнения, 2015. Т. 51, № 10. С. 1354-1366. doi: 10.1134/S0374064115100106.
  21. Watson G. N. A Treatise on the Theory of Bessel Functions. Cambridge: Cambridge University Press, 1944. viii+804 pp.
  22. Olver F. W. J. Differential equations with irregular singularities; Bessel and confluent hypergeometric functions (Chapter 7) / Asymptotics and Special Functions. Boston: Academic Press, Inc., 1974. pp. 229-278. doi: 10.1016/B978-0-12-525850-0.50012-2.
  23. Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G. Higher transcendental functions. vol. II / Bateman Manuscript Project. New York, Toronto, London: McGraw-Hill Book Co., Inc., 1953. xvii+396 pp.
  24. Сафина Р. М. Задача Келдыша для уравнения Пулькина в прямоугольной области // Вестн. СамГУ. Естественнонаучн. сер., 2015. № 3(125). С. 53-63.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2017

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).