Предельный анализ и оптимальное опирание трехслойных армированных круглых пластин из разносопротивляющихся материалов при неравномерном нагружении


Цитировать

Полный текст

Аннотация

В рамках модели идеального жесткопластического тела рассмотрено предельное поведение гибридных композитных круглых пластин. Построено точное решение задачи изгиба трехслойных круглых пластин, имеющих разную структуру углового армирования в верхнем и нижнем слое. Материал среднего слоя и связующего в верхнем и нижнем слоях имеет пределы текучести на сжатие намного большие, чем на растяжение. В этом случае условие пластичности в плоскости главных моментов, построенное на основе структурной модели армированного слоя с одномерным напряженным состоянием в волокнах, имеет вид прямоугольника. Пластины шарнирно оперты по внутреннему круговому контуру и имеют в центральной части жесткую круглую вставку. Пластины находятся под действием осесимметричной поверхностной нагрузки. Показано, что в зависимости от расположения опорного контура, структуры армирования, распределения приложенной нагрузки возможны несколько схем предельного деформирования пластин; определены условия их реализации. Найдены поля главных моментов и скорости прогибов пластины. Получены простые аналитические выражения для предельной нагрузки. Определено оптимальное расположение опоры, при котором пластина имеет наименьшую повреждаемость с точки зрения максимума предельной нагрузки. Показано, что на оптимальной опоре образуется пластический шарнир. Получено, что при увеличении приложенной распределенной нагрузки в несколько раз значения предельных нагрузок уменьшатся во столько же раз, при этом месторасположение оптимальной опоры не изменится. Полученные решения могут быть использованы для оценки несущей способности трехслойных железобетонных пластин.

Об авторах

Татьяна Павловна Романова

Институт теоретической и прикладной механики им. С. А. Христиановича СО РАН

Email: lab4nemir@gmail.com
(к.ф.-м.н.; lab4nemir@gmail.com), старший научный сотрудник, лаб. физики быстропротекающих процессов Россия, 630090, Новосибирск, ул. Институтская, 4/1

Список литературы

  1. Дехтярь А. С. Точечное опирание пластин сложного очертания // Строительная механика и расчет сооружений, 2010. № 2. С. 56-59.
  2. Дехтярь А. С. Нерегулярные конструкции и целесообразность унификации // Строительная механика и расчет сооружений, 2009. № 5. С. 74-77.
  3. Романова Т. П. Несущая способность и оптимизация трехслойных армированных круглых пластин из разносопротивляющихся материалов, опертых по внутреннему контуру // Проблемы прочности и пластичности, 2015. № 3. С. 286-300, http://www.unn.ru/e-library/ppp.html?anum=317.
  4. Yang W. H. How to optimally support a plate // J. Appl. Mech, 1981. vol. 48, no. 1. pp. 207-209. doi: 10.1115/1.3157578.
  5. Оленев Г. М. Оптимальное расположение дополнительных опор к жесткопластическим круглым пластинкам в случае импульсного нагружения // Уч. зап. Тартуского гос. унта, 1983. № 659. С. 30-41.
  6. Дехтярь А. С. Оптимальное опирание квадратной пластины // Прикл. мех., 1991. Т. 27, № 6. С. 107-110.
  7. Дехтярь А. С. Оптимальное размещение колонн в зданиях, возводимых методом подъема // Строительная механика и расчет сооружений, 1989. № 1. С. 14-17.
  8. Коренева Е. Б., Гросман В. Р. Аналитическое решение задачи о неосесимметричной деформации круглой ортотропной пластины радиально-переменной толщины на точечных опорах // International Journal for Computational Civil and Structural Engineering, 2015. № 11. С. 94-100.
  9. Lellep J., Polikarpus J. Optimal design of circular plates with internal supports // WSEAS Transactions on Mathematics, 2012. vol. 11, no. 3. pp. 222-232.
  10. Wang C. M., Liew K. M., Wang L., Aug K. K. Optimal locations of internal line supports for rectangular plates against buckling // Structural Optimization, 1992. vol. 4, no. 3. pp. 199-205. doi: 10.1007/BF01742745.
  11. Папковская О. Б., Козин А. Б., Камара Д. Построение и исследование решения задачи антисимметричного изгиба ортотропной полосовой пластины, подкрепленной жесткой опорой // Труды Одесского политехнического университета, 2006. № 2. С. 181-185, http://www.pratsi.opu.ua/articles/show/641.
  12. Романова Т. П. Оптимальное расположение полигональных внутренних опор к круглым жесткопластическим пластинам // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2014. № 3(36). С. 94-105. doi: 10.14498/vsgtu1312.
  13. Романова Т. П. Оптимальное опирание жесткопластических одно- и двусвязных полигональных пластин // Вестник ПНиПУ. Механика, 2014. № 4. С. 152-177. doi: 10.15593/perm.mech/2014.4.06.
  14. Немировский Ю. В., Романова Т. П. Моделирование поведения двусвязной жесткопластической пластины произвольной формы с внутренней криволинейной опорой при взрывных нагрузках // Проблемы прочности и пластичности, 2014. № 2. С. 122-133, http://www.unn.ru/e-library/ppp.html?anum=258.
  15. Ляхович Л. С., Перельмутер А. В. Некоторые вопросы оптимального проектирования строительных конструкций // International Journal for Computational Civil and Structural Engineering, 2014. № 10(2). С. 14-23.
  16. Вохмянин И. Т., Немировский Ю. В. Особенности продольно-поперечного изгиба трехслойных кольцевых пластинок с несимметричными структурами армирования / Краевые задачи и математическое моделирование: Сб. тр. 8-й Всерос. научн. Конф-ции. Т. 1 (1-3 декабря 2006 г.). Новокузнецк, 2006. С. 25-31.
  17. Немировский Ю. В., Романова Т. П. Расчет динамического деформирования трехслойных железобетонных круглых и кольцевых пластин // Бетон и железобетон, 2011. № 6. С. 26-30.
  18. Nemirovsky Ju. V., Resnikoff B. S. On limit equilibrium of reinforced slabs and effectiveness of their reinforcement // Archiwum Inżynierii Lądowej, 1975. vol. 21, no. 1. pp. 57-67.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2016

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).