Nonlocal transformation of the internal quantum particle structure
- Authors: Samarin A.Y.1
-
Affiliations:
- Samara State Technical University
- Issue: Vol 20, No 3 (2016)
- Pages: 423-456
- Section: Articles
- URL: https://ogarev-online.ru/1991-8615/article/view/20505
- DOI: https://doi.org/10.14498/vsgtu1484
- ID: 20505
Cite item
Full Text
Abstract
The analysis of the integral wave equation, having path integral kernel, has resulted, that collapse phenomenon is based on the nonlocal transformation of the internal structure of a quantum particle, considering in the form of the matter fields collection. This nonlocality allows to escape the contradiction between the reduction quantum mechanics postulate and special relativity. It is shown, that the wave function transformation, corresponding to von Neumann’s reduction, has the deterministic nature and the quantum mechanics stochasticity is a consequence of a macroscopic measurer presence in the measuring process. Besides it is demonstrated, that the decogerence phenomenon has the same mechanism of the wave function transformation. EPR-type experiment is described in detail and the possibility of the faster-then light communication is proved, as well the possible rules of thumb of this communication are proposed.
Full Text
##article.viewOnOriginalSite##About the authors
Alexey Yu Samarin
Samara State Technical University
Email: samarinay@yahoo.com
(Cand. Phys. & Math. Sci.; samarinay@yahoo.com), Associate Professor, Dept. of General Physics and Physics of Oil and Gas Production 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation
References
- Einstein A., Podolsky B., Rosen N. Can quantum mechanics description of physical reality be considered complete? // Physical Review, 1935. vol. 47, no. 10. pp. 777-780. doi: 10.1103/physrev.47.777.
- Bell J. S. On the Einstein Podolsky Rosen paradox // Physics, 1964. vol. 1, no. 3. pp. 195-200; Bell J. S. On the Einstein Podolsky Rosen paradox / John S. Bell on the Foundations of Quantum Mechanics; eds. M. Bell, K. Gottfried, M. Veltman. New Jersey: World Scientific Publ, 2001. pp. 7-12. doi: 10.1142/9789812386540_0002.
- Clouser J. F., Shimony A. Bell's theorem. Experimental tests and implications // Reports on Progress in Physics, 1978. vol. 41, no. 12. pp. 1881-1929. doi: 10.1088/0034-4885/41/ 12/002.
- d'Espagnat B. The quantum theory and reality // Scientific American, 1979. vol. 241, no. 5. pp. 158-181. doi: 10.1038/scientificamerican1179-158.
- Clauser J. F., Hornen M. A., Shimony A., Holt R. A. Proposed experiment to test local hidden-hvriable theories // Physical Review Letters, 1969. vol. 23, no. 15. pp. 880-883. doi: 10.1103/PhysRevLett.23.880.
- Clauser J. F., Freedman S. J. Test of local hidden-variable theories // Physical Review Letters, 1972. vol. 28, no. 14. pp. 938-941. doi: 10.1103/PhysRevLett.28.938.
- Aspect A., Grangier P., Roger G. Experimental realization of Einstein-Podolsky-RosenBohm Gedankenexperiment: a new violation of Bell’s inequalities // Physical Review Letters, 1982. vol. 49, no. 2. pp. 91-94. doi: 10.1103/PhysRevLett.49.91.
- Aspect A. Bell’s inequality test: more ideal than ever // Nature, 1999. vol. 398, no. 6724. pp. 189-190. doi: 10.1038/18296.
- Eberhard P. H. Bell's theorem and the different concepts of locality // Il Nuovo Cimento B, 1978. vol. 46, no. 2. pp. 392-419. doi: 10.1007/BF02728628.
- Ghirardi G. C., Rimini A., Weber T. A general argument against superluminal transmission trought the quantum mechanical measurement process // Lettere al. Nuovo Cimento, 1980. vol. 27, no. 10. pp. 293-298. doi: 10.1007/BF02817189.
- Ghirardi G. C., Weber T. Quantum mechanics and faster-than-light communication: Methodological considerations // Il Nuovo Cimento B, 1983. vol. 78, no. 1. pp. 9-20. doi: 10.1007/BF02721378.
- Maudlin T. What Bell did // J. Phys. A: Math. Theor., 2014. vol. 47, no. 42, 424010. doi: 10.1088/1751-8113/47/42/424010.
- Werner R. F. Comment on ‘What Bell did’ // J. Phys. A: Math. Theor., 2014. vol. 47, no. 42, 424011. doi: 10.1088/1751-8113/47/42/424011.
- Самарин А. Ю. Естественнное пространство микрообъекта // Вестн. Сам. гос. тех. ун-та. Сер. физ.-мат. науки, 2011. № 3(24). С. 117-128. doi: 10.14498/vsgtu911.
- Самарин А. Ю. Пространственная локализация квантовой частицы // Вестн. Сам. гос. тех. ун-та. Сер. физ.-мат. науки, 2013. № 1(30). С. 387-397. doi: 10.14498/vsgtu1138.
- Feynman R. P. Space-Time Approach to Non-Relativistic Quantum Mechanics // Rev. of Mod. Phys., 1948. vol. 20, no. 2. pp. 367-387. doi: 10.1103/RevModPhys.20.367.
- Фейнман Р., Хибс А. Квантовая механика и интегралы по траекториям. М.: Мир, 1968.
- Schrödinger E. Der stetige Übergang von der Mikro- zur Makromechanik // Naturwissenschaften, 1926. vol. 14, no. 28. pp. 664-666. doi: 10.1007/BF01507634; Schrödinger E. The continuous transition from micro- to macro mechanics / Collected papers on wave mechanics. New York: Chelsea Publishing Co., 1982. pp. 41-44, http://www.physics.drexel.edu/~bob/Quantum_Book/Schr_Coh.pdf.
- Bell J. S. Against ‘measurement’ // Physics World, 1990. vol. 3, no. 8. pp. 33-41. doi: 10.1088/2058-7058/3/8/26.
- Kennard E. H. Zur Quantenmechanik einfacher Bewegungstypen // Zeitschrift für Physik, 1927. vol. 44, no. 4-5. pp. 326-352. doi: 10.1007/bf01391200.
- de Broglie L. Einführung in die Wellenmechanik. Leipzig: Akad. Verlag, 1929. iv+221 pp.
- Седов Л. И. Механика сплошной среды. М.: Наука, 1970.
- фон Нейман И. Математические основы квантовой механики. М.: Наука, 1964.
- Ghirardi G C., Pearle P., Rimini A. Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles // Physical Review A, 1990. vol. 42, no. 1. pp. 78-90. doi: 10.1103/PhysRevA.42.78.
- Bassi A., Ghirardi G C. Dynamical reduction models // Physics Reports, 2003. vol. 379, no. 5-6. pp. 257-426, arXiv: quant-ph/0302164. doi: 10.1016/S0370-1573(03)00103-0.
- Bassi A. Dynamical reduction models: present status and future developments // Journal of Physics: Conference Series, 2007. vol. 67, 012013, arXiv: quant-ph/0701014. doi: 10.1088/1742-6596/67/1/012013.
- Кац М. Вероятность и смежные вопросы в физике. М.: Мир, 1965.
- Зинн-Жюстен Ж. Континуальный интеграл в квантовой механике. М.: Физматлит, 2006.
- Samarin A. Yu. Quantum particle motion in physical space // Advanced Studies in Theoretical Physics, 2014. vol. 8, no. 1. pp. 27-34, arXiv: 1407.3559 [quant-ph]. doi: 10.12988/astp.2014.311136.
- Мелешко Н. В., Самарин А. Ю. Специфика перехода к мнимому времени в интеграле по траекториям при описании коллапса волновой функции // Вестн. Сам. гос. тех. ун-та. Сер. физ.-мат. науки, 2014. № 4(37). С. 170-177. doi: 10.14498/vsgtu1352.
- Zurek W. H. Decoherence and the Transition from Quantum to Classical // Physics Today, 1991. vol. 44, no. 10. pp. 36-44, arXiv: quant-ph/0306072. doi: 10.1063/1.881293.
- Zurek W. H. Decoherence, einselection, and the quantum origins of the classical // Reviews of Modern Physics, 2003. vol. 75, no. 3. pp. 715-775, arXiv: quant-ph/0105127. doi: 10.1103/ revmodphys.75.715.
- Schlosshauer M. Decoherence, the measurement problem, and interpretations of quantum mechanics // Reviews of Modern Physics, 2004. vol. 76, no. 4. pp. 1267-1305, arXiv: quantph/0312059. doi: 10.1103/RevModPhys.76.1267.
- Peres A., Terno D. Quantum information and relativity theory // Reviews of Modern Physics, 2004. vol. 76, no. 1. pp. 93-123, arXiv: quant-ph/0212023. doi: 10.1103/ RevModPhys.76.93.
- Gisin N. Stochastic quantum dynamics and relativity // Helvetica Physica Acta, 1989. vol. 62, no. 4. pp. 363-371, http://www.unige.ch/gap/quantum/publications:bib:gisin1989.
- Peres A. How the no-cloning theorem got its name // Fortschritte der Physik, 2003. vol. 51, no. 45. pp. 458-461, arXiv: quant-ph/0205076. doi: 10.1002/prop.200310062.
- Herbert N. FLASH-A superluminal communicator based upon a new kind of quantum measurement // Foundations of Physics, 1982. vol. 12, no. 12. pp. 1171-1179. doi: 10.1007/bf00729622.
- Wootters W. K., Zurek W. H. A single quantum cannot be cloned // Nature, 1982. vol. 299, no. 5886. pp. 802-803. doi: 10.1038/299802a0.
- Dieks D. Communication by EPR devices // Physics Letters A, 1982. vol. 92, no. 6. pp. 271. doi: 10.1016/0375-9601(82)90084-6.
- Barnum H., Caves C. M., Fuchs C. A., Jozsa R., Schumacher B. Noncommuting mixed states cannot be broadcast // Physical Review Letters, 1996. vol. 76, no. 15. pp. 2818-2821, arXiv: quant-ph/9511010. doi: 10.1103/physrevlett.76.2818.
- Peres A. Information and Thermodynamics / Quantum Theory: Concepts and Methods / Fundamental Theories of Physics, 57. New York: Kluwer Academic Publ., 2002. pp. 260. doi: 10.1007/0-306-47120-5_9.
- Brune M., Hagley E., Dreyer J., Maître X., Maali A., Wunderlich C., Raimond J. M., Haroche S. Observing the progressive decoherence of the “meter” in a quantum measurement // Physical Review Letters, 1996. vol. 77, no. 24. pp. 4887-4890. doi: 10.1103/ PhysRevLett.77.4887.
- Самарин А. Ю. Механизм возникновения стохастичности в квантовой механике // Вестн. Сам. гос. тех. ун-та. Сер. физ.-мат. науки, 2012. № 4(29). С. 188-198. doi: 10.14498/vsgtu1122.
- von Klitzing K., Dorda G., Pepper M. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance // Physical Review Letters, 1980. vol. 45, no. 6. pp. 494-498. doi: 10.1103/PhysRevLett.45.494.
- von Klitzing K. The Quantized Hall Effect / Nobel Lectures in Physics 1981-1990. Singapore: World Scientific Publishing Co., 1993. pp. 316-346, http://www.nobelprize.org/nobel_ prizes/physics/laureates/1985/klitzing-lecture.pdf.
- Emelyanov S. A. Quantum mechanics vs relativity: an experimental test of the structure of spacetime // Physica Scripta, 2012. vol. T151, 014012, arXiv: 0901.0088 [physics.gen-ph]. doi: 10.1088/0031-8949/2012/t151/014012.
- Ландау Л. Д., Лифшиц Е. М. Теория поля / Теоретическая физика. Т. 2. М.: Наука, 1988.
Supplementary files

