Численное интегрирование краевых задач для нелинейных обыкновенных дифференциальных уравнений второго порядка произвольной структуры с использованием итерационных процедур


Цитировать

Полный текст

Аннотация

Предложена итерационная процедура численного интегрирования краевых задач для нелинейных обыкновенных дифференциальных уравнений второго порядка произвольной структуры. Исходное дифференциальное уравнение алгебраическими преобразованиями приведено к линейному неоднородному дифференциальному уравнению второго порядка с постоянными коэффициентами, правая часть которого представлена в виде линейной комбинации производных искомой функции вплоть до второй степени и исследуемого дифференциального уравнения произвольной структуры. При построении разностной краевой задачи были использованы многочлены Тейлора, что позволило отказаться от аппроксимации производных конечными разностями. Степень многочленов Тейлора может быть выбрана равной любому натуральному числу, большему или равному двум. Построенное линейное неоднородное дифференциальное уравнение имеет три произвольных коэффициента. Показано, что коэффициент при исходном дифференциальном уравнении произвольной структуры в правой части полученного неоднородного линейного дифференциального уравнения связан со сходимостью итерационной процедуры, а коэффициенты при производных искомой функции влияют на устойчивость разностной краевой задачи на каждой итерации. Теоретически установлены значения коэффициентов при производных искомой функции, обеспечивающие устойчивость разностной краевой задачи независимо от вида исходного уравнения. При выполнении численного эксперимента выявлено, что коэффициент, обеспечивающий сходимость итерационной процедуры, зависит от вида исходного дифференциального уравнения. Численный эксперимент показал, что увеличение степени используемого многочлена Тейлора приводит к уменьшению погрешности между точным и найденным численным решениями.

Об авторах

Владимир Николаевич Маклаков

Самарский государственный технический университет

Email: makvo63@yandex.ru
(к.ф.-м.н., доц.; makvo63@yandex.ru), доцент, каф. высшей математики и прикладной информатики Россия, 443100, Самара, ул. Молодогвардейская, 244

Список литературы

  1. Радченко В. П., Усов А. А. Модификация сеточных методов решения линейных дифференциальных уравнений с переменными коэффициентами на основе тейлоровских разложений // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2008. № 2(17). С. 60-65. doi: 10.14498/vsgtu646.
  2. Маклаков В. Н., Усов А. А. Численное интегрирование матричным методом краевых задач для нелинейных обыкновенных дифференциальных уравнений второго порядка с использованием итерационных процедур / Труды девятой Всероссийской научной конференции с международным участием. Часть 3 / Математическое моделирование и краевые задачи. Самара: СамГТУ, 2013. С. 35-42.
  3. Lentini M., Pereyra V. A Variable Order Finite Difference Method for Nonlinear Multipoint Boundary Value Problems // Mathematics of Computation, 1974. vol. 28, no. 128. pp. 981- 1003. doi: 10.2307/2005360.
  4. Keller H. B. Numerical Solution of Boundary Value Problems for Ordinary Differential Equations: Survey and Some Resent Results on Difference Methods / Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. New York: Academic Press, 1975. pp. 27-88. doi: 10.1016/b978-0-12-068660-5.50007-7.
  5. Годунов С. К., Рябенький В. С. Разностные схемы. М.: Наука, 1977. 439 с.
  6. Формалеев В. Ф., Ревизников Д. Л. Численные методы. М.: Физматлит, 2004. 400 с.
  7. Boutayeb A., Chetouani A. Global extrapolations of numerical methods for solving a parabolic problem with non local boundary conditions // International Journal of Computer Mathematics, 2003. vol. 80, no. 6. pp. 789-797. doi: 10.1080/0020716021000039209.
  8. Boutayeb A., Chetouani A. A Numerical Comparison of Different Methods Applied to the Solution of Problems with Non Local Boundary Conditions // Applied Mathematical Sciences, 2007. vol. 1, no. 44. pp. 2173-2185.
  9. Васильков Ю. В., Василькова Н. Н. Компьютерные технологии вычислений в математическом моделировании. М.: Финансы и статистика, 1999. 255 с.
  10. Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, 1976. 576 с.
  11. Закс Л. Статистическое оценивание. М.: Статистика, 1976. 598 с.
  12. Маклаков В. Н. Итерационный метод численного интегрирования краевых задач для систем нелинейных обыкновенных дифференциальных уравнений второго порядка / Труды десятой Всероссийской научной конференции с международным участием. Часть 3 / Математическое моделирование и краевые задачи. Самара: СамГТУ, 2016. С. 50-58.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2016

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».