On decisions of Schwartz' problem for J-analytic functions with the same Jordan basis of real and imaginary parts of J-matrix


Cite item

Full Text

Abstract

Boundary Schwartz' problem for J-analytic functions was studied within this scientific work. These functions are solutions of linear complex system of partial differential equations of the first order. It was considered, that the real and imaginary parts of J-matrix are put into triangular form by means of one and the same complex transformation. The main theorem proved a criterion for eigenvalues of J-matrix. Shall this criterion be fulfilled within the complex plane within the boundaries defined by Lyapunov line, there is a decision on Schwartz' problem and it is the only one. The equal form of this criterion was found, which in many cases is more convenient for check. While proving the theorem, known facts about boundary properties of λ-holomorphic functions are applied. The proof itself is based on the method of direct and reverse reduction of Schwarz' problem to Dirichlet’s problem for real valued elliptic systems of partial differential equations of the second order. Examples of matrices are given, whereby the specified criterion is fulfilled.

About the authors

Vladimir G Nikolaev

Novgorod State University after Yaroslav the Wise

Email: vg14@inbox.ru
(Cand. Phys. & Math. Sci.; vg14@inbox.ru), Associate Professor, Dept. of Algebra and Geometry 41, Bol'shaya St. Petersburgskaya st., Novgorod the Great, 173003, Russian Federation

References

  1. Солдатов А. П. Задача Шварца для функций, аналитических по Дуглису // Совр. математика и ее приложения, 2010. Т. 67, Уравнения с частными производными. С. 99-102.
  2. Николаев В. Г., Солдатов А. П. О решении задачи Шварца для J-аналитических функций в областях, ограниченных контуром Ляпунова // Диффер. уравн., 2015. № 7. С. 965-969.
  3. Солдатов А. П. Интегральное представление функций, аналитических по Дуглису // Вестн. СамГУ. Естественнонаучн. сер., 2008. № 8/1(67). С. 225-234.
  4. Солдатов А. П. Гипераналитические функции и их приложения // Совр. математика и ее приложения, 2004. Т. 15, Теория функций. С. 142-199.
  5. Солдатов А. П. Пространство Харди решений эллиптических систем первого порядка // Докл. РАН, 2007. Т. 416, № 1. С. 26-30.
  6. Солдатов А. П. Эллиптические системы высокого порядка // Диффер. уравн., 1989. Т. 25, № 1. С. 136-142.
  7. Бицадзе А. В. О единственности решения задачи Дирихле для эллиптических уравнений с частными производными // УМН, 1948. Т. 3, № 6(28). С. 211-212.
  8. Бицадзе А. В. Основы теории аналитических функций комплексного переменного. М.: Наука, 1972. 347 с.
  9. Бицадзе А. В. Краевые задачи для эллиптических уравнений второго порядка. М.: Наука, 1966. 298 с.
  10. Боярский Б. В. Теория обобщенного аналитического вектора // Annales Polonici Mathematici, 1965. Т. 17, № 3. С. 281-320, https://eudml.org/doc/265098.
  11. Векуа И. Н. Обобщенные аналитические функции. М.: Наука, 1988. 328 с.
  12. Жура Н. А. Краевые задачи типа Бицадзе-Самарского для эллиптических в смысле Дуглиса-Ниренберга систем // Диффер. уравн., 1992. Т. 28, № 1. С. 81-91.
  13. Жура Н. А. Общая краевая задача для эллиптических в смысле Дуглиса-Ниренберга систем в областях с гладкой границей // Изв. РАН, 1994. № 1. С. 22-44.
  14. Мусхелишвили Н. И. Сингулярные интегральные уравнения. Граничные задачи теории функций и некоторые их приложения к математической физике. М.: Наука, 1968. 511 с.
  15. Николаев В. Г. О некоторых свойствах J-аналитических функций // Вестн. СамГУ. Естественнонаучн. сер., 2013. № 3(104). С. 25-32.
  16. Николаев В. Г., Панов Е. Ю. Результаты о совпадении λ- и µ-голоморфных функций на границе области и их приложения к краевым задачам / Проблемы математического анализа: Межвузовский международный сборник, Вып. 74; ред. Н. Н. Уральцева. Новосибирск: Тамара Рожковская, 2013. С. 123-132.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).