A nonlinear boundary integral equations method for the solving of quasistatic elastic contact problem with Coulomb friction


Cite item

Full Text

Abstract

Three-dimensional quasistatic contact problem of two linearly elastic bodies’ interaction with Coulomb friction taken into account is considered. The boundary conditions of the problem have been simplified by the modification of the Coulomb’s law of friction. This modification is based on the introducing of a delay in normal contact tractions that bound tangent contact tractions in the Coulomb’s law of friction expressions. At this statement the problem is reduced to a sequence of similar systems of nonlinear integral equations describing bodies’ interaction at each step of loading. A method for an approximate solution of the integral equations system corresponded to each step of loading is applied. This method consists of system regularization, discretization of regularized system and iterative process application for solving the discretized system. A numerical solution of a contact problem of an elastic sphere with an elastic half-space interaction under increasing and subsequently decreasing normal compressive force has been obtained.

About the authors

Yurii M Streliaiev

Zaporizhzhya National University

Email: strelkiny@gmail.com
(strelkiny@gmail.com), Senior Lecturer, Dept. of Mathematical Analysis 66, Zhukovskogo st., Zaporizhzhya, 69600, Ukraine

References

  1. Кравчук А. С. Вариационный метод в контактных задачах. Состояние проблемы, направления развития // ПММ, 2009. Т. 73, № 3. С. 492-502.
  2. Reina S. A., Dini D., Hills D. A., Lida Y. A quadratic programming formulation for the solution of layered elastic contact problems: Example applications and experimental validation // European Journal of Mechanics - A/Solids, 2011. vol. 30, no. 3. pp. 236-247. doi: 10.1016/j.euromechsol.2010.12.003.
  3. Галанов Б. А. Метод граничных уравнений типа Гаммерштейна для контактных задач теории упругости в случае неизвестных областей контакта // ПММ, 1985. Т. 49, № 5. С. 827-835.
  4. Галанов Б. А. О приближенном решении некоторых задач упругого контакта двух тел // Изв. АН СССР, МТТ, 1981. № 5. С. 61-67.
  5. Александров В. М., Kalker I. I., Пожарский Д. А. Пространственная контактная задача для двухслойного упругого основания с заранее неизвестной областью контакта // Изв. РАН, МТТ, 1999. № 4. С. 51-55.
  6. Чебаков М. И. Трехмерная контактная задача для слоя с учетом сил трения в области контакта // Изв. РАН, МТТ, 2002. № 6. С. 59-68.
  7. Александров В. М., Пожарский Д. А. Трехмерные контактные задачи при учете трения и нелинейной шероховатости // ПММ, 2004. Т. 68, № 3. С. 516-527.
  8. Александров А. И., Стреляев Ю. М. Метод нелинейных граничных интегральных уравнений для контактных задач теории упругости // Восточно-Европейский журнал передовых технологий, 2014. Т. 3, № 7(69). С. 36-40.
  9. Александров А. И. Метод решения пространственной контактной задачи о взаимодействии двух упругих тел при наличии трения между ними // Математичнi методи i фiзико-механiчнi поля, 2013. Т. 56, № 3. С. 29-42.
  10. Johnson K. L. Contact Mechanics. Cambridge: Cambridge University Press, 1985, xii+452 pp. doi: 10.1017/CBO9781139171731.
  11. Александров А. И. Неподвижные точки непрерывных операторов в гильбертовом пространстве. Запорожье: Запорож. гос. ун-т, 2002. 77 с.
  12. Тихонов А. Н., Арсенин В. Я. Методы решения некорректных задач. М.: Наука, 1986. 288 с.
  13. Красносельский М. А., Вайникко Г. М., Забрейко П. П., Рутицкий Я. Б., Стеценко В. Я. Приближенное решение операторных уравнений. М.: Наука, 1969. 456 с.
  14. Ахиезер Н. И., Глазман И. М. Теория линейных операторов в гильбертовом пространстве. М.: Наука, 1966. 543 с.
  15. Канторович Л. В., Акилов Г. П. Функциональный анализ. М.: Наука, 1984. 752 с.
  16. Turner J. R. The frictional unloading problem on linear elastic half-space // IMA J. Appl. Math., 1979. vol. 24, no. 4. pp. 439-469. doi: 10.1093/imamat/24.4.439.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).