A method for solving problems of heat transfer during the flow of fluids in a plane channel


Cite item

Full Text

Abstract

Using the integral method of heat-transfer with the additional boundary conditions we obtain the high precision approximate analytical solution of heat-transfer for a fluid, moving in plate-parallel channel with symmetric boundary conditions of the first kind. Because of the infinite speed of heat propagation described by a parabolic equation of heat-conduction, the temperature in the centre of channel would change immediately after the boundary conditions (of the first kind) application. We receive the approximate analytical solution of boundary value problem using the representation of this temperature in the form of additional required function and introducing the additional boundary conditions to satisfy the original differential equation in boundary points by the desired function. Using of the integral of heat balance we reduce the solving of differential equation in partial derivatives to integration of ordinary differential equation with respect to additional required function, that changes depending on longitudinal variable. We note that fulfillment of the original equation at the boundaries of the area with increasing number of approximations leads to the fulfillment of that equation inside the area. No need to integrate the differential equation on the transverse spatial variable, so we are limited only by the implementation of the integral of heat-transfer (averaged original differential equation), that allows to apply this method to boundary value problems, unsolvable using classic analytical methods.

About the authors

Anton V Eremin

Samara State Technical University

Email: a.v.eremin@list.ru
(Cand. Tech. Sci.; a.v.eremin@list.ru; Corresponding Author), Associate Professor, Dept. of Theoretical Fundamentals of Heat-Engineering and Hydromechanics 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

Igor V Kudinov

Samara State Technical University

Email: igor-kudinov@bk.ru
(Cand. Tech. Sci.; igor-kudinov@bk.ru), Associate Professor, Dept. of Theoretical Fundamentals of Heat-Engineering and Hydromechanics 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

Vitaliy V Zhukov

Samara State Technical University

Email: vrbatacom@mail.ru
Postgraduate Student, Dept. of Theoretical Fundamentals of Heat-Engineering and Hydromechanics 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

References

  1. Кудинов В. А., Стефанюк Е. В. Аналитический метод решения задач теплопроводности на основе введения фронта температурного возмущения и дополнительных граничных условий // Инженерно-физический журнал, 2009. Т. 82, № 3. С. 540-558.
  2. Стефанюк Е. В., Кудинов В. А. Получение приближенных аналитических решений при рассогласовании начальных и граничных условий в задачах теории теплопроводности // Изв. вузов. Матем., 2010. № 4. С. 63-71.
  3. Кудинов В. А., Кудинов И. В., Скворцова М. П. Обобщенные функции и дополнительные граничные условия в задачах теплопроводности для многослойных тел // Ж. вычисл. матем. и матем. физ., 2015. Т. 55, № 4. С. 669-680. doi: 10.7868/S0044466915040080.
  4. Тимошпольский В. И., Постольник Ю. С., Андрианов Д. Н. Теоретические основы теплофизики и термомеханики в металлургии. Минск: Бел. навука, 2006. 560 с.
  5. Федоров Ф. М. Граничный метод решения прикладных задач математической физики. Новосибирск: Наука, 2000. 220 с.
  6. Глазунов Ю. Т. Вариационные методы. Москва, Ижевск: Регулярная и хаотическая динамика; Институт компьютерных исследований, 2006. 470 с.
  7. Петухов Б. С. Теплообмен и сопротивление при ламинарном течении жидкости в трубах. М.: Энергия, 1967. 412 с.
  8. Цой П. В. Системные методы расчета краевых задач тепломассопереноса. М.: МЭИ, 2005. 568 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).