Ортогональная система Франклина и ортогональная система финитных функций в численных методах решения краевых задач
- Авторы: Леонтьев В.Л.1
-
Учреждения:
- Ульяновский государственный университет
- Выпуск: Том 19, № 2 (2015)
- Страницы: 398-404
- Раздел: Статьи
- URL: https://ogarev-online.ru/1991-8615/article/view/20485
- DOI: https://doi.org/10.14498/vsgtu1414
- ID: 20485
Цитировать
Полный текст
Аннотация
Возможности классических рядов Фурье, связанных с тригонометрическими функциями, существенно ограничены в двумерных и трехмерных краевых задачах. Граничные условия таких краевых задач для областей с криволинейными границами часто не удается выполнить при использовании классических рядов Фурье. Решение этой проблемы дает использование ортогональных финитных базисных функций. Однако ортогональные базисные функции Хаара не являются непрерывными. Ортогональные вейвлеты Добеши имеют компактные носители, но не записываются в аналитической форме и имеют низкую гладкость. Непрерывные финитные функции Фабера-Шаудера не являются ортогональными. Ортогональные непрерывные функции Франклина не являются финитными. Здесь установлена связь ортогональной системы функций Франклина с последовательностью сеточных наборов кусочно-линейных ортогональных финитных базисных функций (ОФФ). Сформирован ряд Фурье-ОФФ на основе таких непрерывных ОФФ, который позволяет выполнять граничные условия типа Дирихле на криволинейных границах в рамках интегральных постановок краевых задач. Аналогичная проблема, связанная с удовлетворением граничных условий типа Неймана, также устраняется при дополнительном использовании смешанных интегральных постановок краевых задач. Ряд Фурье-ОФФ повышает эффективность смешанных численных методов решения краевых задач.
Полный текст
Открыть статью на сайте журналаОб авторах
Виктор Леонтьевич Леонтьев
Ульяновский государственный университет
Email: LeontievVL@ulsu.ru
(д.ф.-м.н., проф.; LeontievVL@ulsu.ru), профессор, каф. информационная безопасность и теория управления Россия, 432017, Ульяновск, ул. Л. Толстого, 42
Список литературы
- Леонтьев В. Л. Ортогональная система Франклина и ортогональная система финитных функций в численных методах решения краевых задач / Четвертая международная конференция «Математическая физика и ее приложения»: материалы конф.; ред. чл.корр. РАН И. В. Волович; д.ф.-м.н., проф. В. П. Радченко. Самара: СамГТУ, 2014. С. 228-229.
- Haar A. Zur Theorie der orthogonalen Funktionensysteme // Math. Ann., 1910. vol. 69, no. 3. pp. 331-371. doi: 10.1007/bf01456326.
- Daubechles I. Orthonormal Bases of Compactly Supported Wavelets // Commun. Pure Appl. Math., 1988. vol. 41, no. 7. pp. 909-996. doi: 10.1002/cpa.3160410705 ; Daubechles I. Orthonormal Bases of Compactly Supported Wavelets / Fundamental Papers in Wavelet Theory. Princeton: Princeton University Press, 2009. pp. 564-652. doi: 10.1515/9781400827268.564 doi: 10.1515/9781400827268.
- Faber G. Uber die Orthogonalfunktionen des Herrn Haar // Jahresbericht der Deutschen Mathematiker-Vereinigung, 1910. vol. 19. pp. 104-112.
- Shauder J. Eine Eigenschaft des Haarschen Orthogonalsystems // Math. Z., 1928. vol. 28, no. 1. pp. 317-320. doi: 10.1007/BF01181164.
- Franklin P. A set of continuous orthogonal functions // Math. Ann., 1928. vol. 100, no. 1. pp. 522-529. doi: 10.1007/bf01448860 ; Franklin P. A set of continuous orthogonal functions / Fundamental Papers in Wavelet Theory. Princeton: Princeton University Press, 2009. pp. 189-196. doi: 10.1515/9781400827268.189 doi: 10.1515/9781400827268.
- Ульянов П. Л. О рядах по системе Хаара // Докл. Акад. наук СССР, 1963. Т. 149, № 3. С. 532-534.
- Ульянов П. Л. О рядах по системе Хаара // Матем. сб., 1964. Т. 63(105), № 3. С. 356-391.
- Schipp F., Simon P. Investigation of Haar and Franklin series in Hardy spaces // Anal. Math., 1982. vol. 8, no. 1. pp. 47-56. doi: 10.1007/bf02073771.
- Геворкян Г. Г. Об абсолютной и безусловной сходимости рядов по системе Франклина // Матем. заметки, 1989. Т. 45, № 3. С. 30-42.
- Wojtaszczyk P., Woźniakowski K. Orthonormal polynomial bases in function spaces // Israel J. Math., 1991. vol. 75, no. 2/3. pp. 167-191. doi: 10.1007/bf02776023.
- Кашин Б. С., Саакян А. А. Ортогональные ряды. М.: АФЦ, 1999. 550 с.
- Chen W., Cai Z., Qi D. A New Class of Orthogonal Spline Moments and Its Application // J. Inf. Comput. Sci., 2013. vol. 10, no. 14. pp. 4563-4571. doi: 10.12733/jics20102141.
- Леонтьев В. Л. Ортогональные финитные функции и численные методы. Ульяновск: УлГУ, 2003. 178 с.
- Леонтьев В. Л. Вариационно-сеточный метод решения задач о собственных колебаниях упругих трехмерных тел, связанный с использованием ортогональных финитных функций // Изв. РАН. МТТ, 2002. № 3. С. 117-126.
- Леонтьев В. Л. Ортогональные сплайны и вариационно-сеточный метод // Матем. моделирование, 2002. Т. 14, № 3. С. 117-127.
- Леонтьев В. Л., Лукашанец Н. Ч. О сеточных базисах ортогональных финитных функций // Ж. вычисл. матем. и матем. физ., 1999. Т. 39, № 7. С. 1158-1168.
- Красильников А. Р., Леонтьев В. Л. О вариационно-сеточном методе теории пластин // Матем. моделирование, 2005. Т. 17, № 3. С. 23-34.
- Леонтьев В. Л., Риков Е. А. Интегральные преобразования, связанные с ортогональными финитными функциями, в задачах спектрального анализа сигналов // Матем. моделирование, 2006. Т. 18, № 7. С. 93-100.
- Леонтьев В. Л., Михайлов И. С. О построении потенциала взаимодействия атомов, основанном на ортогональных финитных функциях // Нано- и микросистемная техника, 2011. № 9. С. 48-50.
Дополнительные файлы

