Аналог задачи ∆1 для гиперболического уравнения второго порядка в трехмерном евклидовом пространстве


Цитировать

Полный текст

Аннотация

В трехмерном евклидовом пространстве рассматривается уравнение второго порядка гиперболического типа. В бесконечной цилиндрической области, ограниченной характеристическими поверхностями данного уравнения, поставлена краевая задача с данными на смежных характеристических поверхностях уравнения и условиями сопряжения на внутренней нехарактеристической плоскости. На искомое решение налагается также условие обращения его в нуль при z → ∞ вместе с производной по переменной z . Методом преобразования Фурье поставленная задача сводится к соответствующей плоской задаче ∆1 для гиперболического уравнения, которое в характеристических координатах является обобщенным уравнением Эйлера-Дарбу с отрицательным параметром. Авторами получены оценки как самого решения плоской задачи, так и его частных производных до второго порядка включительно. Это, в свою очередь, дало возможность на заданные граничные функции наложить условия, обеспечивающие существование классического решения поставленной задачи в виде преобразования Фурье.

Об авторах

Ирина Николаевна Родионова

Самарский государственный аэрокосмический университет имени академика С. П. Королёва (национальный исследовательский университет)

(к.ф.-м.н., доц.), доцент, каф. математики и бизнес-информатики Россия, 443086, Самара, Московское ш., 34

Вячеслав Михайлович Долгополов

Самарский государственный аэрокосмический университет имени академика С. П. Королёва (национальный исследовательский университет)

Email: paskal1940@mail.ru
(к.ф.-м.н., доц.; paskal1940@mail.ru; автор, ведущий переписку), доцент, каф. математики и бизнес-информатики Россия, 443086, Самара, Московское ш., 34

Список литературы

  1. Бицадзе А. В. К проблеме уравнений смешанного типа в многомерных областях // ДАН СССР, 1956. Т. 110, № 6. С. 901-902.
  2. Нахушев А. М. Об одном трехмерном аналоге задачи Геллерстедта // Дифференц. уравнения, 1968. Т. 4, № 1. С. 52-62.
  3. Пулькин С. П. К вопросу о постановке задачи Трикоми в пространстве // Ученые записки Куйб. пед. ин-та, 1956. № 14. С. 63-77.
  4. Долгополов В. М., Долгополов М. В., Родионова И. Н. Построение специальных классов решений некоторых дифференциальных уравнений гиперболического типа // Докл. РАН, 2009. Т. 429, № 5. С. 583-589.
  5. Долгополов В. М., Родионова И. Н. Задачи для уравнений гиперболического типа на плоскости и в трехмерном пространстве с условиями сопряжения на характеристике // Изв. РАН. Сер. матем., 2011. Т. 75, № 4. С. 21-28. doi: 10.4213/im4117.
  6. Долгополов В. М., Родионова И. Н. Экстремальные свойства решений специальных классов одного уравнения гиперболического типа // Матем. заметки, 2012. Т. 92, № 4. С. 533-540. doi: 10.4213/mzm8900.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2015

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).