Нелокальная задача А. А. Дезина для уравнения смешанного эллиптико-гиперболического типа


Цитировать

Полный текст

Аннотация

В данной работе для уравнения смешанного эллиптико-гиперболического типа в прямоугольной области изучена задача с условиями периодичности и нелокальным условием А. А. Дезина. Установлен критерий единственности. Решение задачи построено в виде суммы ортогонального ряда по собственным функциям соответствующей одномерной спектральной задачи. При обосновании сходимости ряда возникает проблема малых знаменателей. В связи с этим установлена оценка отделенности от нуля малых знаменателей с соответствующей асимптотикой. Эта оценка позволила при некоторых условиях относительно заданных параметров задачи и функций доказать сходимость построенного ряда в классе регулярных решений и устойчивость решения.

Об авторах

Виолетта Александровна Гущина

Самарский государственный социально-педагогический университет

Email: violetta.novikova.1991@mail.ru
аспирант, каф. физики, математики и методики обучения Россия, 443099, Самара, ул. М. Горького, 65/67

Список литературы

  1. Dezin A. A. On the solvable extensions of partial differential operators / Outlines Joint Sympos. Partial Differential Equations (Novosibirsk, 1963). Moscow: Acad. Sci. USSR Siberian Branch, 1963. pp. 65-66.
  2. Дезин А. А. Операторы с первой производной по «времени» и нелокальные граничные условия // Изв. АН СССР. Сер. матем., 1967. Т. 31, № 1. С. 61-86.
  3. Нахушева З. А. Об одной нелокальной задаче А. А. Дезина для уравнения Лаврентьева-Бицадзе // Дифференц. уравнения, 2009. Т. 45, № 8. С. 1199-2003.
  4. Нахушева З. А. Нелокальные краевые задачи для основных и смешанных типов дифференциальных уравнений, 2011. 196 с.
  5. Сабитов К. Б., Новикова В. А. Нелокальная задача А. А. Дезина для уравнения Лаврентьева-Бицадзе // Изв. вузов. Матем., 2016. № 6 (в печати).
  6. Франкль Ф. И. Обтекание профилей потоком дозвуковой скорости со сверхзвуковой зоной, оканчивающейся прямым скачком уплотнения // ПММ, 1956. Т. 20, № 2. С. 196-202.
  7. Жегалов В. И. Краевая задача для уравнения смешанного типа с граничными условиями на обеих характеристиках и с разрывами на переходной линии / Краевые задачи теории аналитических функций / Учен. зап. Казан. ун-та., Т. 122. Казань: Изд-во Казанского ун-та, 1962. С. 3-16.
  8. Нахушев А. М. О некоторых краевых задачах для гиперболических уравнений и уравнений смешанного типа // Дифференц. уравнения, 1969. Т. 5, № 1. С. 44-59.
  9. Сабитов К. Б. Задача Дирихле для уравнения смешанного типа // ДАН, 2007. Т. 413, № 1. С. 23-26.
  10. Сабитов К. Б., Сидоренко О. Г. Задача с условиями периодичности для вырождающегося уравнения смешанного типа // Дифференц. уравнения, 2010. Т. 46, № 1. С. 105-113.
  11. Арнольд В. И. Малые знаменатели и проблемы устойчивости движения в классической и небесной механике // УМН, 1963. Т. 18, № 6(114). С. 91-192.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2016

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).