Задача Гурса для нагруженного вырождающегося гиперболического уравнения второго порядка с оператором Геллерстедта в главной части


Цитировать

Полный текст

Аннотация

Рассматривается нагруженное вырождающееся гиперболическое уравнение второго порядка с переменными коэффициентами. Главная часть уравнения представляет собой оператор Геллерстедта. Нагруженное слагаемое представляет собой след искомого решения на линии вырождения, которая лежит внутри области. Исследуется задача с данными на одной из характеристик исследуемого уравнения. В модельном случае, когда коэффициенты при младших членах обращаются в ноль, решение задачи Гурса выписано в явном виде. При этом использовалась функция Грина-Адамара для уравнения Эйлера-Дарбу-Пуассона. В общем случае разрешимость задачи Гурса эквивалентным образом редуцирована к вопросу о разрешимости интегрального уравнения Вольтерра второго рода. В этом случае использована схема, реализованная С. Геллерстедтом при доказательстве существования решения второй задачи Дарбу для рассматриваемого уравнения без нагрузки. В обоих случаях существенно использовались известные свойства функции Грина-Адамара. К

Об авторах

Анатолий Хусеевич Аттаев

Институт прикладной математики и автоматизации

Email: attaev.anatoly@yandex.ru
(к.ф.-м.н., доц.; attaev.anatoly@yandex.ru), заведующий отделом, отдел САПР смешанных систем и управления Россия, 360000, Нальчик, ул. Шортанова, 89 а

Список литературы

  1. Нахушев А. М. Нагруженные уравнения и их применение. М.: Наука, 2012. 232 с.
  2. Нахушев А. М. Уравнения математической биологии. М.: Высшая школа, 1995. 301 с.
  3. Нахушев А. М. О задаче Дарбу для одного вырождающегося нагруженного интегродифференциального уравнения второго порядка // Дифференц. уравнения, 1976. Т. 12, № 1. С. 103-108.
  4. Казиев М. В. Задача Гурса для одного нагруженного интегро-дифференциального уравнения // Дифференц. уравнения, 1981. Т. 17, № 2. С. 313-319.
  5. Репин О. А., Тарасенко А. В. Задача Гурса и Дарбу для одного нагруженного интегродифференциального уравнения второго порядка // Математический журнал. Алматы, 2011. Т. 11, № 2. С. 64-72, http://www.math.kz/images/journal/2011-2/Repin_Tarasenko.pdf (дата обращения: 23.10.2015).
  6. Аттаев А. Х. Задача Гурса для локально нагруженного уравнения со степенным параболическим вырождением // Доклады Адыгской (Черкесской) Международной академии наук, 2008. Т. 10, № 2. С. 14-17.
  7. Аттаев А. Х. Задача Гурса для нагруженного гиперболического уравнения // Доклады Адыгской (Черкесской) Международной академии наук, 2014. Т. 16, № 3. С. 9-12.
  8. Огородников Е. Н. Некоторые характеристические задачи для систем нагруженных дифференциальных уравнений и их связь с нелокальными краевыми задачами // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2003. № 19. С. 22-28. doi: 10.14498/vsgtu134.
  9. Огородников Е. Н. Корректность задачи Коши-Гурса для системы вырождающихся нагруженных гиперболических уравнений в некоторых специальных случаях и ее равносильность задачам с нелокальными краевыми условиями // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2004. № 26. С. 26-38. doi: 10.14498/vsgtu173.
  10. Нахушев А. М. О нелокальных краевых задачах со смещением и их связи с нагруженными уравнениями // Дифференц. уравнения, 1985. Т. 21, № 1. С. 92-101.
  11. Gellerstedt S. Sur une équation linéaire aux dérivées partielles de type mixte // Ark. Mat. Astron. Fys. A, 1937. vol. 25, no. 29. pp. 1-23.
  12. Нахушев А. М. Об одном классе линейных краевых задач для гиперболического и смешанного типов уравнений второго порядка. Нальчик: Эльбрус, 1992. 154 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2016

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).