Модель осциллятора с нарушением симметрии


Цитировать

Полный текст

Аннотация

Рассмотрены уравнения движения осциллятора с их точными решениями в виде экспонент с дополнительным параметром. Данный параметр характеризует асимметрию колебаний. Показано, что эти уравнения являются частным случаем уравнения Хилла. Получены уравнения для трех видов таких экспонент, в том числе для экспоненты, обладающей свойством унитарности. Найдены лагранжианы и гамильтонианы к этим уравнениям. Доказано, что все уравнения связаны каноническими преобразованиями и, по сути, являются одним и тем же уравнением, выраженным в разных обобщенных координатах и импульсах. Причем решения линейных однородных уравнений одного типа являются одновременно решениями линейных неоднородных уравнений другого. Обсуждается возможность квантования таких систем.

Об авторах

Дмитрий Борисович Волов

Самарский государственный университет путей сообщения

Email: volovdm@mail.ru
(д.т.н., доц.; volovdm@mail.ru), профессор, каф. физики и химии Россия, 443066, Самара, 1-й Безымянный пер., 18

Список литературы

  1. Волов Д. Б. Модель осциллятора с нарушением симметрии / Четвертая международная конференция «Математическая физика и ее приложения»: материалы конф.; ред. чл.-корр. РАН И. В. Волович; д.ф.-м.н., проф. В. П. Радченко. Самара: СамГТУ, 2014. С. 110-111.
  2. Magnus W., Winkler S. Hill’s Equation / Interscience Tracts in Pure and Applied Mathematics. vol. 20. New York, London, Sydney: Interscience Publ., 1966. viii+127 pp.
  3. Varrió S. A new class of exact solutions of the Klein-Gordon equation of a charged particle interacting with an electromagnetic plane wave in a medium // Laser Phys. Lett., 2014. vol. 11, no. 1, 016001. doi: 10.1088/1612-2011/11/1/016001.
  4. Takara M., Toyoshima M., Seto H., Hoshino Y., Miura Y. Polymer-modified gold nanoparticles via RAFT polymerization: a detailed study for a biosensing application // Polym. Chem., 2014. vol. 5, no. 3. pp. 931-939. doi: 10.1039/c3py01001e.
  5. Vázquez C., Collado J., Fridman L. Super twisting control of a parametrically excited a overhead crane // Journal of the Franklin Institute, 2014. vol. 351, no. 4. pp. 2283-2298. doi: 10.1016/j.jfranklin.2013.02.011.
  6. Lei H., Xu B. High-order analytical solutions around triangular libration points in the circular restricted three-body problem // Monthly Notices of the Royal Astronomical Society, 2013. vol. 434, no. 2. pp. 1376-1386. doi: 10.1093/mnras/stt1099.
  7. Волов Д. Б. Некоторые уравнения на основе одномерных хаотических динамик // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2013. № 1(30). С. 334-342. doi: 10.14498/vsgtu1175.
  8. Волов Д. Б. Об унитарности битриальных операторов в явном виде обобщенного уравнения // Вестник СамГУПС, 2013. № 4. С. 107-112.
  9. Magnus K., Popp K., Sextro W. Schwingungen. Physikalische Grundlagen und mathematische Behandlung von Schwingungen [Oscillations. Physical foundations and mathematical treatment of oscillations]. Wiesbaden: Springer Vieweg, 2013, xi+298 pp. doi: 10.1007/978-3-8348-2575-9.
  10. Ландау Л. Д., Лифшиц Е. М. Глава 5. Малые колебания / Теоретическая физика. Т. 1, Механика. М.: Наука, 1988. С. 78-125.
  11. Давыдов А. С. Теория твердого тела. М.: Наука, 1976. 639 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2015

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).