The effect of bone tissue density on the stress-strain state near dental implants

Cover Page

Cite item

Full Text

Abstract

The dependence of the stress-strain state of the bone tissue on its density near the dental implant has been studied. The computations were performed by the boundary element method for the plane-deformed state of a model consisting of a cylindrical implant and surrounding bone tissues. Bone tissue is considered as an isotropic and homogeneous elastic material. Simulation the effect of bone density on the stress-strain state when applying a quasi-static load is performed by changing of elasticity modulus of the bone. It has been established that with the increasing in the spongy bone tissue elastic modulus, the maximum equivalent stresses in this bone tissue increase. Stresses in the cortical bone tissue decrease with the increasing in the spongy bone elastic modulus due to the decreasing in the load transferred to this bone part. Stresses in the spongy bone decrease with the increasing in the cortical bone layer elasticity modulus. The level of maximum stress in the cortical layer of the bone increases with the increasing of this bone tissue elastic modulus. The maximum of stresses in the cortical bone tissue are observed near the implant neck.

About the authors

Mikhail N. Perelmuter

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Author for correspondence.
Email: perelm@ipmnet.ru
ORCID iD: 0000-0002-8430-5412
SPIN-code: 1057-0990
Scopus Author ID: 8156746000
ResearcherId: J-1283-2014

Dr. Phys. & Math. Sci.; Leading Researcher; Lab. of Mechanics of Strength and Fracture of Materials and Structures

Russian Federation, 119526, Moscow, pr. Vernadskogo, 101–1

References

  1. Paraskevich V. L. Dental’naia implantologiia: Osnovy teorii i praktiki [Dental Implantology: The fundamentals of Theory and Practice]. Moscow, Medical Information Agency, 2011, 400 pp. (In Russian)
  2. Chugh T., Jain A. K., Jaiswal R. K., et al. Bone density and its importance in orthodontics, J. Oral Biol. Craniofac. Res., 2013, vol. 3, no. 2, pp. 92–97. DOI: https://doi.org/10.1016/j.jobcr.2013.01.001.
  3. Premnath K., Sridevi J., Kalavathy N., et al. Evaluation of stress distribution in bone of different densities using different implant designs: A three-dimensional finite element analysis, J. Indian Prosthodont Soc., 2013, vol. 13, no. 4, pp. 555–559. DOI: https://doi.org/10.1007/s13191-012-0189-7.
  4. Wirth A. J., Muller R., van Lenthe G. H. Computational analyses of small endosseous implants in osteoporotic bone, Eur. Cell. Mater., 2010, vol. 20, pp. 58–71. DOI: https://doi.org/10.22203/ecm.v020a06.
  5. Lee H., Jo M., Noh G. Biomechanical effects of dental implant diameter, connection type, and bone density on microgap formation and fatigue failure: A finite element analysis, Comput. Methods Programs Biomed., 2021, vol. 200, 105863. DOI: https://doi.org/10.1016/j.cmpb.2020.105863.
  6. Zioupos P., Cook R. B., Hutchinson J. R. Some basic relationships between density values in cancellous and cortical bone, J. Biomech., 2008, vol. 41, no. 9, pp. 1961–1968. DOI: https://doi.org/10.1016/j.jbiomech.2008.03.025.
  7. Clift S. E., Fisher J., Watson C. J. Finite element stress and strain analysis of the bone surrounding a dental implant: Effect of variations in bone modulus, Proc. Inst. Mech. Eng. H, 1992, vol. 206, no. 4, pp. 233–241. DOI: https://doi.org/10.1243/PIME_PROC_1992_206_295_02.
  8. Rogozhnikov G. I., Konyuhova S. G., Nyashin Y. I., et al. The influence of elasticity modulus of spongy and cortical bone on stress state near planar implant under occlusal load, Russian Journal of Biomechanics, 2004, vol. 8, no. 1, pp. 49–54.
  9. Nutu E., Ahmad S., Pastrama S. Influence of bone elastic properties on the predicted stress distribution in the dental implant vicinity, Materials Today: Proceedings, 2017, vol. 4, no. 5, part 1, pp. 5904–5908. DOI: https://doi.org/10.1016/j.matpr.2017.06.067.
  10. Olesova V. N., Bronshtein D. A., Lerner A. Ya., et al. Stress-strain state in prosthetic construction on dental implant with cement fixing artificial crown, Russian Journal of Biomechanics, 2016, vol. 20, no. 4, pp. 266–269.
  11. Fedorova N. V. The study of the stress-strain state of the dental ceramic implants depending on their shape and bone mineralization degree, Russian Journal of Biomechanics, 2019, vol. 23, no. 3, pp. 388–394. EDN: BDBUKN. DOI: https://doi.org/10.15593/RZhBiomeh/2019.3.10.
  12. Dyachenko D. Yu., Dyachenko S. V. Finite element method in computer simulation for improved patient care in dentistry: A systematic review, Kuban Scientific Medical Bulletin, 2021, vol. 28, no. 5, pp. 98–116 (In Russian). EDN: KDCHLT. DOI: https://doi.org/10.25207/1608-6228-2021-28-5-98-116.
  13. Büyük F. N., Savran E., Karpat F. Review on finite element analysis of dental implants, J. Dent. Implant Res., 2022, vol. 41, no. 3, pp. 50–63. DOI: https://doi.org/10.54527/jdir.2022.41.3.50.
  14. Wolfe L. A. Stress analysis of endosseous implants using the Boundary Integral Equation (BIE) method, J. Biomed. Eng., 1993, vol. 15, no. 4, pp. 319–323. DOI: https://doi.org/10.1016/0141-5425(93)90009-N.
  15. Perelmuter M. N. Analysis of stress-strain state of dental implants by the boundary integral equations method, PNRPU Mechanics Bulletin, 2018, no. 2, pp. 83–95 (In Russian). EDN: XUGGCL. DOI: https://doi.org/10.15593/perm.mech/2018.2.08.
  16. Citarella R., Armentani E., Caputo F., Lepore M. Stress analysis of an endosseus dental implant by BEM and FEM, The Open Mechanical Engineering Journal, 2012, vol. 6, pp. 115–124. DOI: https://doi.org/10.2174/1874155X01206010115.
  17. Misch C. E., Qu Z., Bidez M W. Mechanical properties of trabecular bone in the human mandible: Implications for dental implant treatment planning and surgical placement, J. Oral Maxillofac. Surg., 1999, vol. 57, no. 6, pp. 700–706. DOI: https://doi.org/10.1016/S0278-2391(99)90437-8.
  18. Korol D. M., Nikolov V. V., Onipko E. L., Efimenko A. S. Determination of the intensity of occlusal pressure in patients at orthopedic examination, Modern Medicine: Current Issues, 2015, no. 46–47, pp. 40–46 (In Russian). EDN: UINWJH.
  19. Banerjee P. K., Butterfield R. Boundary Element Methods in Engineering Science. London, McGraw-Hill, 1981, 452 pp.
  20. Perelmuter M. N. Application of the boundary element method in the study of the spatial stress state of composite structures, In: Problems of Strength and Dynamics in Aircraft Engine. Issue 4, Proc. CIAM, 1237, 1989, pp. 74–99 (In Russian).
  21. Perelmuter M. Boundary element analysis of structures with bridged interfacial cracks, Comput. Mech., 2013, vol. 51, no. 4, pp. 523–534. EDN: RFJHDN. DOI: https://doi.org/10.1007/s00466-012-0817-4.
  22. Perelmuter M. Analysis of interaction of bridged cracks and weak interfaces, Int. J. Mech. Sci., 2018, vol. 149, no. 4, pp. 349–360. EDN: BLWNCV. DOI: https://doi.org/10.1016/j.ijmecsci.2018.10.011.
  23. Lin D., Li Q., Li W., et al. Mandibular bone remodeling induced by dental implant, J. Biomech., 2010, vol. 43, no. 2, pp. 287–293. DOI: https://doi.org/10.1016/j.jbiomech.2009.08.024.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. The model subregions: 1, 3 — cortical bone, 2 — spongy bone, 4 — implant, 5 — screw, 6 — abatment, 7 — ceramics crown under inclined load

Download (104KB)
3. Figure 2. Boundary elements discretization of the implant and surrounded bone tissues under inclined load application; 7 subregions; total 1106 nodes

Download (111KB)
4. Figure 3. The maximum stresses in the spongy bone vs the modulus of elasticity of the spongy bone; compression

Download (103KB)
5. Figure 4. The maximum stresses in the cortical bone vs the modulus of elasticity of the spongy bone; compression

Download (113KB)
6. Figure 5. The maximum stresses in the spongy bone vs the modulus of elasticity of the cortical bone, compression

Download (95KB)
7. Figure 6. The maximum stresses in the cortical bone vs the modulus of elasticity of the cortical bone; compression

Download (96KB)
8. Figure 7. Stresses intensity $\sigma_i$ along the spongy bone contour; compression, $E_c=18$ GPa: a) $\sigma_{i,\max}=2.6$ MPa, $E_s=0.5$ GPa; b) $\sigma_{i,\max}=3.9$ MPa, $E_s=5.0$ GPa

Download (152KB)
9. Figure 8. The maximum stresses in the spongy bone vs the modulus of elasticity of the spongy bone; inclined load

Download (108KB)
10. Figure 9. The maximum stresses in the cortical bone vs the modulus of elasticity of the spongy bone; inclined load

Download (98KB)
11. Figure 10. The maximum stresses in the spongy bone vs the modulus of elasticity of the cortical bone; inclined load

Download (100KB)
12. Figure 11. The maximum stresses in the cortical bone vs the modulus of elasticity of the cortical bone; inclined load

Download (92KB)
13. Figure 12. Stresses intensity $\sigma_i$ along the spongy bone contour; compression, $E_c=18$ GPa: a) $\sigma_{i,\max}=4.3$ MPa, $E_s=0.5$ GPa; b) $\sigma_{i,\max}=12.2$ MPa, $E_s=5.0$ GPa

Download (150KB)

Copyright (c) 2023 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).