Investigation of the Cauchy problem for one fractional order equation with the Riemann–Liouville operator

Cover Page

Cite item

Full Text

Abstract

The article is dedicated to solving the Cauchy problem for a differential equation with a Riemann–Liouville fractional derivative. The initial condition is formulated in a natural way and it is proven that the resulting solution is regular. Firstly, a fundamental solution is constructed and its properties are analyzed. Then, based on these properties, the solution to the homogeneous equation in the Cauchy problem is studied. Furthermore, unlike other problems of this type, the solution to the Cauchy problem presented for a nonhomogeneous equation is explicitly obtained in this work using the Duhamel’s principle and the three-parameter Mittag–Leffler function. By applying additional conditions to these problems, it is also demonstrated that this solution is classical.

About the authors

Ibrohim I. Hasanov

Bukhara State University

Email: ihasanov998@gmail.com
ORCID iD: 0000-0002-9634-5550

Teacher; Dept. of Differential Equation

Uzbekistan, 705018, Bukhara, st. Muhammad Ikbol, 11

Dilshoda I. Akramova

Bukhara State University

Email: akramova.shoda@mail.ru
ORCID iD: 0000-0001-9596-9401

Teacher; Dept. of Mathematical Analysis

Uzbekistan, 705018, Bukhara, st. Muhammad Ikbol, 11

Askar A. Rahmonov

Institute of Mathematics named after V.I. Romanovsky of the Academy of Sciences of the Republic of Uzbekistan

Author for correspondence.
Email: araxmonov@mail.ru
ORCID iD: 0000-0002-7641-9698
SPIN-code: 2647-3705
Scopus Author ID: 57202852322

Cand. Phys. & Math. Sci.; Senior Researcher

Uzbekistan, 100174, Tashkent, st. Universitetskaya, 46

References

  1. Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204. Amsterdam, Elsevier, 2006, xx+523 pp. EDN: RLZKLZ. DOI: https://doi.org/10.1016/s0304-0208(06)x8001-5.
  2. Pskhu A. V. Fractional diffusion equation with discretely distributed differentiation operator, Sib. Èlektron. Mat. Izv., 2016, vol. 13, pp. 1078–1098. EDN: XRNEPH. DOI: https://doi.org/10.17377/semi.2016.13.086.
  3. Parovik R. I. Cauchy problem for the nonlocal equation diffusion-advection radon in fractal media, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2010, no. 1(20), pp. 127–132. EDN: NBOEJN. DOI: https://doi.org/10.14498/vsgtu742.
  4. Mamchuev M. O. Modified cauchy problem for a loaded second-order parabolic equation with constant coefficients, Diff. Equat., 2015, vol. 51, no. 9, pp. 1137–1144. EDN: VAHISF. DOI: https://doi.org/10.1134/S0012266115090037.
  5. Mamchuev M. O. Fundamental solution of a loaded second-order parabolic equation with constant coefficients, Diff. Equat., 2015, vol. 51, no. 5, pp. 620–629. EDN: UEWBJX. DOI: https://doi.org/10.1134/S0012266115050055.
  6. Durdiev D. K., Shishkina E. L., Sitnik S. M. The explicit formula for solution of anomalous diffusion equation in the multi-dimensional space, Lobachevskii J. Math., 2021, vol. 42, no. 6, pp. 1264–1273. EDN: HGPFMT. DOI: https://doi.org/10.1134/S199508022106007X; arXiv: 2009.10594 [math.CA]. DOI: https://doi.org/10.48550/arXiv.2009.10594.
  7. Sultanov M. A., Durdiev D. K., Rahmonov A. A. Construction of an explicit solution of a time-fractional multidimensional differential equation, Mathematics, 2021, vol. 9, no. 17, 2052. EDN: HZEAME. DOI: https://doi.org/10.3390/math9172052.
  8. Gorenflo R., Kilbas A. A., Mainardi F., Rogosin S. V. Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics. Berlin, Heidelberg, Springer, 2014, xiv+443 pp. DOI: https://doi.org/10.1007/978-3-662-43930-2.
  9. Mathai A. M., Saxena R. K., Haubold H. J. The H-Function. Theory and Applications. Berlin, Heidelberg: Springer, 2010. xiv+268 pp. DOI: https://doi.org/10.1007/978-1-4419-0916-9.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).