Analysis on generalized Clifford algebras

Cover Page

Cite item

Full Text

Abstract

In this article, we study the analysis related to generalized Clifford algebras Cna, where a is a non-zero vector. If e1,...,en is an orthonormal basis, the multiplication is defined by relations
ej2=ajej-1,
eiej+ejei=aiej+ajei,
for aj=ej·a. The case a=0 corresponds to the classical Clifford algebra. We define the Dirac operator as usual by D=jejxj and define regular functions as its null solution. We first study the algebraic properties of the algebra. Then we prove the basic formulas for the Dirac operator and study the properties of regular functions.

About the authors

Heikki Orelma

Tampere University

Author for correspondence.
Email: Heikki.Orelma@tuni.fi
ORCID iD: 0000-0002-8251-4333

D.Sc. (Tech.), Adjunct Professor; Researcher; Dept of Mechanics and Mathematics

Finland, 33100, Tampere, Kalevantie 4

References

  1. Yaglom I. M. Complex Numbers and Their Application in Geometry. Moscow, Fizmatgiz, 1963, 192 pp. (In Russian)
  2. Kanzaki T. On the quadratic extensions and the extended Witt ring of a commutative ring, Nagoya Math. J., 1973, vol. 49, pp. 127–141. DOI: https://doi.org/10.1017/S0027763000015348.
  3. Helmstetter J., Micali A., Revoy P. Generalized quadratic modules, Afr. Mat., 2012, vol. 23, no. 1, pp. 53–84. DOI: https://doi.org/10.1007/s13370-011-0018-x.
  4. Tutschke W., Vanegas C. J. Clifford algebras depending on parameters and their applications to partial differential equations, In: Some Topics on Value Distribution and Differentiability in Complex and p-Adic Analysis, Mathematics Monograph Series, 11; eds. A. Escassut, W. Tutschke, C. C. Yang. Beijing, Science Press, 2008, pp. 430–450.
  5. Bourbaki N. Éléments de mathématique. Algèbre. Chapitre 9. Berlin, Springer, 2007, 211 pp.
  6. Chevalley C. Collected Works, vol. 2, The algebraic theory of spinors and Clifford algebras, eds. P. Cartier, C. Chevalley. Berlin, Springer, 1997, xiv+214 pp.
  7. Delanghe R., Sommen F., Souček V. Clifford Algebra and Spinor-Valued Functions. A Function Theory for the Dirac Operator, Mathematics and its Applications, vol. 53. Dordrecht, Kluwer Academic Publ., 1992, xvii+485 pp.
  8. Gürlebeck K., Habetha K., Sprößig W. Funktionentheorie in der Ebene und im Raum, Grundstudium Mathematik. Basel, Birkhäuser, 2006, xiii+406 pp.
  9. Müller C. Properties of the legendre functions, In: Spherical Harmonics, Lecture Notes in Mathematics, 17. Berlin, Springer, 1966, pp. 29–37. DOI: https://doi.org/10.1007/BFb0094786.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).