Построение профилей научных публикаций на основе текстов и связей соавторства (на примере теории управления и ее приложений)
- Авторы: Губанов Д.А1, Мельничук В.С1,2
-
Учреждения:
- Институт проблем управления им. В.А. Трапезникова РАН
- МГТУ им. Н.Э. Баумана
- Выпуск: № 1 (2025)
- Страницы: 46-52
- Раздел: Информационные технологии в управлении
- URL: https://ogarev-online.ru/1819-3161/article/view/351157
- ID: 351157
Цитировать
Полный текст
Аннотация
Расчет профилей научных публикаций играет ключевую роль в систематизации научных знаний и поддержке принятия научных решений. Предложен метод формирования профилей публикаций в области теории управления, основанный на интеграции анализа текстов и анализа сетей соавторства. Сначала описан базовый алгоритм, который позволяет анализировать тексты публикаций при помощи тематического классификатора, затем приведена его усовершенствованная версия, учитывающая сетевые связи с помощью эвристического подхода. Исследование методов с применением экспертных оценок и количественных метрик показало, что комбинирование текстовых и сетевых данных значительно повышает точность профилей публикаций. Проверка гипотез о взаимосвязи тематического сходства и сетевой близости публикаций показывает обоснованность предложенного подхода, а также позволяет определить направления дальнейших исследований.
Ключевые слова
Об авторах
Д. А Губанов
Институт проблем управления им. В.А. Трапезникова РАН
Email: dmitry.a.g@gmail.com
г. Москва, Россия
В. С Мельничук
Институт проблем управления им. В.А. Трапезникова РАН; МГТУ им. Н.Э. Баумана
Автор, ответственный за переписку.
Email: vs.melnichuk09@gmail.com
г. Москва, Россия
Список литературы
- Крыжановская С.Ю., Власов А.В., Еремеев М.А., Воронцов К.В. Полуавтоматическая суммаризация тематических подборок научных публикаций: задачи и подходы // Тезисы докладов 20-й Всероссийской конференции с международным участием «Математические методы распознавания образов». – Москва, 2021. – С. 333–338. [Kryzhanovskaya, S.Y., Vlasov, A.V., Eremeev, M.A., Vorontsov, K.V. Poluavtomaticheskaya summarizatsiya tematicheskikh podborok nauchnykh publikatsii: zadachi i podkhody // Tezisy dokladov 20-i Vserossiiskoi konferentsii s mezhdunarodnym uchastiem «Matematicheskie metody raspoznavaniya obrazov». – Moscow, 2021. – P. 333–338. (In Russian)]
- Shibayama, S., Yin, D., Matsumoto, K. Measuring Novelty in Science with Word Embedding // PLoS ONE. – 2021. – No. 7. – P. 1–16.
- Yuan, W., Liu, P., Neubig, G. Can We Automate Scientific Reviewing? // Journal of Artificial Intelligence Research. – 2022. – No. 75. – P. 171–212.
- Cachola, I., Lo, K., Cohan, A., Weld, D. TLDR: Extreme Summarization of Scientific Documents // Findings of the Association for Computational Linguistics: EMNLP 2020. – 2020. – P. 4766–4777.
- Bao, P., Hong, W., Li, X. Predicting Paper Acceptance via Interpretable Decision Sets. // In: Companion Proceedings of the Web Conference 2021 (WWW '21). – New York: Association for Computing Machinery, 2021. – P. 461–467.
- Kasanishi, T., Isonuma, M., Mori, J., Sakata, I. SciReviewGen: A Large-scale Dataset for Automatic Literature Review Generation. – arXiv:2305.15186, 2023. – P. 1–19. – DOI: https://doi.org/10.48550/arXiv.2305.15186
- Blei, D.M., Ng, A.Y., Jordan, M.I. Latent Dirichlet Allocation // Journal of Machine Learning Research. – 2003. – No. 3. – P. 993–1022.
- Hasegawa, T., Arvidsson, H., Tudzarovski, N., et al. Edge-Based Graph Neural Networks for Cell-Graph Modeling and Prediction // Information Processing in Medical Imaging. – 2023. – Vol. 13939. – P. 265–277.
- Xiong, C., Li, W., Liu, Y., Wang., M. Multi-Dimensional Edge Features Graph Neural Network on Few-Shot Image Classification // IEEE Signal Processing Letters. – 2021. – Vol. 28. – P. 573–577.
- Faber, L., Lu, Y., Wattenhofer, R. Should Graph Neural Networks Use Features, Edges, Or Both? – arXiv: 2103.06857.arXiv, 2021. – P. 1–12. – DOI: https://doi.org/48550/arXiv.2103.06857
- Zhou, J., Cui, G., Hu, S., et al. Graph Neural Networks: A Review of Methods and Applications // AI Open. – 2020. – Vol. 1. – P. 57–81.
- Kipf, T.N., Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. – arXiv:1609.02907, 2017. – P. 1–14. – DOI: https://doi.org/10.48550/arXiv.1609.02907
- Губанов Д.А., Кузнецов О.П., Суховеров В.С., Чхартишвили А.Г. О построении профилей в тематическом пространстве теории управления // Материалы 9-й Международной конференции «Знания-Онтологии-Теории». – Новосибирск, 2023. – С. 89–94. [Gubanov, D.A., Kuznetsov, O.P., Sukhoverov, V.S., Chkhartishvili, A.G. O postroenii profilei v tematicheskom prostranstve teorii upravleniya // Materialy 9-i Mezhdunarodnoi konferentsii “Znaniya-Ontologii-Teorii”. – Novosibirsk, 2023. – P. 89–94. (In Russian)]
- Кузнецов О.П., Суховеров В.С. Онтологический подход к оценке тематики научного текста // Онтология проектирования. – 2016. – Т. 6, № 1. – С. 55–66. [Kuznetsov, O.P., Sukhoverov, V.S. An Ontological Approach to Determining the Subject Matter of Scientific Text // Ontology of Designing. – 2016. – Vol. 6, no. 1. – P. 55–66. (In Russian)]
Дополнительные файлы



