Dynamic Anisotropy-Based Controller Design for Time-Invariant Systems with Multiplicative Noise
- Authors: Yurchenkov A.V1
-
Affiliations:
- Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
- Issue: No 1 (2025)
- Pages: 30-39
- Section: Analysis and Design of Control Systems
- URL: https://ogarev-online.ru/1819-3161/article/view/351155
- ID: 351155
Cite item
Abstract
This paper considers a linear discrete time-invariant system with multiplicative noise and a control input under an external disturbance from a special class. The plant’s dynamics are described in the state space. The class of external disturbances contains a set of stationary Gaussian sequences with a bounded mean anisotropy. The anisotropic norm of the closed-loop control system is chosen as the performance criterion. It is required to design a dynamic link-based control scheme under which the anisotropic norm of the closed-loop control system will be bounded by the minimum possible threshold. At the first stage of solving this problem, the controller’s dynamics are written out and the plant under consideration is augmented. The boundedness criterion of the anisotropic norm in terms of matrix inequalities is used to derive sufficient conditions for the existence of a solution of a convex optimization problem to minimize the upper bound of the anisotropic norm. A special change of variables is performed in the resulting inequalities to eliminate the nonlinear dependence on the unknown controller matrices. After a linearizing inversible change of variables, the optimization problem is solved numerically using standard methods. At the last stage, the desired controller matrices are calculated in the state space to ensure the bounded anisotropic norm of the closed-loop control system.
About the authors
A. V Yurchenkov
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Author for correspondence.
Email: alexander.yurchenkov@yandex.ru
Moscow, Russia
References
- Astrom, K.J. Introduction to Stochastic Control Theory. – Academic Press, 1970. – 322 p.
- Zames, G. Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverses // IEEE Transactions on Automatic Control. – 1981. – Vol. 26, no. 2. – P. 301–320.
- Haddad, W.M., Bernstein, D.S., Mustafa, D. Mixed-Norm H2/H∞ Regulation and Estimation: The Discrete-Time Case // Systems & Control Letters. – 1991. – Vol. 16, no. 4. – P. 235–247.
- Zhou, K., Glover, K., Bodenheimer, B., Doyle, J. Mixed H2 and H∞ Performance Objectives I: Robust Performance Analysis // IEEE Transactions on Automatic Control. – 1994. – Vol. 38. – P. 1564–1574.
- Khargonekar, P.P., Rotea, M.A., Baeyens, E. Mixed H2/H∞ Filtering // International Journal of Robust and Nonlinear Control. – 1996. – Vol. 6. – P. 313–330.
- Scherer, C.W. Mixed H2/H∞ Control. – Springer-Verlag, 1995. – 216 p.
- Semyonov, A.V., Vladimirov, I.G., Kurdyukov, A.P. Stochastic Approach to H∞–optimization // Proceedings of the 33rd Conference on Decision and Control. – 1994. – P. 2249–2250.
- Владимиров И.Г., Курдюков А.П., Семенов А.В. Анизотропия сигналов и энтропия линейных стационарных систем // Доклады РАН. – 1995. – Т. 342, № 5. – С. 583–585. [Vladimirov, I.G., Kurdyukov, A.P., Semyonov, A.V. Anisotropy Signals and the Entropy of Linear Stationary Systems // Doklady Mathematics. – 1995. – Vol. 51, no. 3. – P. 388–390.]
- Владимиров И.Г., Даймонд Ф., Клоеден П.Е. Анизотропийный анализ робастного качества линейных нестационарных дискретных систем на конечном временном интервале // Автоматика и телемеханика. – 2006. – № 8. – С. 92–111. [Vladimirov, I.G., Diamond, P., Kloeden, P. Anisotropy–based Robust Performance Analysis of Finite Horizon Linear Discrete Time Varying Systems // Automation and Remote Control. – 2006. – Vol. 67, no. 7. – P. 1265–1282.]
- Vladimirov, I.G., Kurdyukov, A.P., Semyonov, A.V. On Computing the Anisotropic Norm of Linear Discrete-time-invariant Systems // Proceedings of 13th IFAC World Congr. – San Francisco, 1996. – P. 179–184.
- Kustov, A.Yu. State-Space Formulas for Anisotropic Norm of Linear Discrete Time Varying Stochastic System // Proceedings of 15th Int. Conf. on Electr. Eng., Comp. Science and Autom. Control. – Porto, 2018. – P. 1–6.
- Юрченков А.В., Кустов А.Ю., Курдюков А.П. Условия ограниченности анизотропийной нормы системы с мультипликативными шумами // Доклады Академии наук. – 2016. – Т. 467, № 4. – С. 396–399. [Yurchenkov, A.V., Kustov, A.Yu, Kurdyukov, A.P. Anisotropy-based Bounded Real Lemma for Discrete-Time Systems with Multiplicative Noise // Doklady Mathematics. – Vol. 93, no. 2. – P. 238–240.]
- Юрченков А.В. Синтез анизотропийного управления для линейной дискретной системы с мультипликативными шумами // Известия РАН. Теория и системы управления. – 2018. – № 6. – С. 33–44. [Yurchenkov, A.V. Anisotropy-Based Controller Design for Linear Discrete-Time Systems with Multiplicative Noise // Journal of Computer and Systems Sciences Int. – 2018. – Vol. 57, no. 6. – P. 864–873.]
- Won, M. and Ranade, G. Control of systems with multiplicative observation noise // Proceedings of the 62nd IEEE Conference on Decision and Control. – Singapore, 2023. – P. 3950–3955.
- Lu, C., Lu, X., Wang, H., et al. Control for Multiplicative Noise Systems with Packet Dropouts and Multiple Delays // Proceedings of the 40th Chinese Control Conference. – Shanghai, 2021. – P. 1544–1549.
- Belov, I.R., Yurchenkov, A.V., Kustov, A.Yu. Anisotropy-Based Bounded Real Lemma for Multiplicative Noise Systems: The Finite Horizon Case // Proceedings of the 27th Med. Conf. on Control and Automation. – Akko, 2019. – P. 148–152.
- Kustov, A.Yu., Timin, V.N., Yurchenkov, A.V. Boundedness Condition for Anisotropic Norm of Linear Discrete Time-invariant Systems with Multiplicative Noise // Journal of Physics: Conference Series. – 2021. – Vol. 1864. – Art. no. 012068.
- Yurchenkov, A.V., Kustov, A.Yu., Timin, V.N. The Sensor Network Estimation with Dropouts: Anisotropy-Based Approach // Automatica. – 2023. – Vol. 151. – Art. no. 110924.
- Юрченков А.В. Настройка сети датчиков с отказами на основе анизотропийного критерия // Вестник Московского государственного технического университета им. Н.Э. Баумана. Серия Естественные науки. – 2023. – № 1. – С. 45–63. [Yurchenkov, A.V. Default Sensor Network Setup based on the Anisotropic Criterion // Herald of the Bauman Moscow State Technical University, Series Natural Sciences. – 2023. – Vol. 106, no. 1. – P. 45–63. (In Russian)]
- Gahinet, P. Explicit controller formulas for LMI-based H∞ synthesis // Automatica. – 1996. – Vol. 32. – P. 1007–1014.
- Diamond, P., Vladimirov, I.G., Kurdyukov, A.P., Semyonov, A.V. Anisotropy-Based Performance Analysis of Linear Discrete Time Invariant Control Systems // International Journal of Control. – 2001. – Vol. 74, no. 1. – P. 28–42.
- Diamond, P., Kloeden, P., Vladimirov, I.G. Mean Anisotropy of Homogeneous Gaussian Random Fields and Anisotropic Norms of Linear Translation-Invariant Operators on Multidimensional Integer Lattices // Journal of Applied Mathematics and Stochastic Analysis. – 2003. – Vol. 16, no.3. – P. 209–231.
- Владимиров И.Г., Курдюков А.П., Семенов А.В. Стохастическая проблема H∞-оптимизации. // Доклады РАН. – 1995. – Т. 343, № 5. – С. 607–609. [Vladimirov, I.G., Kurdyukov, A.P., Semyonov, A.V. The Stochastic Problem of H∞- Optimization // Doklady Mathematics. – 1995. – Vol. 52. – P. 155–157.]
- Юрченков А.В. Условие ограниченности анизотропийной нормы для стационарных систем с мультипликативнымишумами // Проблемы управления. – 2022. – № 5. – С. 16–24. [Yurchenkov, A.V. An Anisotropy-Based Boundedness Criterion for Time-Invariant Systems with Multiplicative Noises // Control Sciences. – 2022. – No. 5. – P. 13–20.]
- Scherer, C.W., Gahinet, P., Chilali, M. Multiobjective Output-Feedback Control via LMI Optimization // IEEE Transactions on Automatic Control. – 1997. – Vol. 42. – P. 896–911.
- Toffner-Clausen, S. System Identification and Robust Control: A Case Study Approach. – Berlin: Springer-Verlag, 1996. – 311 p.
- Lofberg, J. YALMIP: A Toolbox for Modeling and Optimization in MATLAB // Proceedings of the 2004 IEEE International Conference on Robotics and Automation. – New Orleans, 2004. – P. 284–289.
- Sturm, J.F. Using SeDuMi 1.02, a MATLAB Toolbox for Optimization over Symmetric Cones // Optimization Methods and Software. – 1999. – Vol. 11. – P. 625–653.
- Boyd, S., Vandenberghe, L. Convex Optimization. – Cambridge: Cambridge University Press, 2004. – 730 p.
- Чайковский М.М. Синтез анизотропийных регуляторов методами выпуклой оптимизации и полуопределенного программирования // Управление большими системами. – 2013. – Вып. 42. – С. 100–152. [Tchaikovsky, M.M. Synthesis of Anisotropic Controllers via Convex Optimization and Semidefinite Programming // Large-Scale Systems Control. – 2013. – Iss. 42. – P. 100–152. (In Russian)]
Supplementary files



