Условие ограниченности анизотропийной нормы для стационарных систем с мультипликативными шумами

Обложка

Цитировать

Полный текст

Аннотация

Проводится анизотропийный анализ для линейных дискретных стационарных систем с мультипликативными шумами. Используется описание динамики системы в пространстве состояний. Внешнее возмущение принадлежит классу последовательностей случайных векторов с ограниченным уровнем средней анизотропии. Мультипликативные шумы центрированы и имеют единичные дисперсии. Внешнее возмущение и мультипликативные шумы предполагаются взаимно независимыми. Для рассматриваемой системы получено условие ограниченности анизотропийной нормы в терминах неравенства типа Риккати на основе леммы о вещественной ограниченности в рамках анизотропийной теории. Показано, что с помощью специального преобразования можно свести задачу анализа ограниченности анизотропийной нормы к задаче выпуклой оптимизации с дополнительными ограничениями. Из существования решения задачи выпуклой оптимизации будет следовать ограниченность анизотропийной нормы системы с мультипликативными шумами, а минимальная верхняя граница анизотропийной нормы может быть получена после решения соответствующей задачи выпуклой оптимизации.

Об авторах

А. В Юрченков

Институт проблем управления им. В.А. Трапезникова РАН

Автор, ответственный за переписку.
Email: alexander.yurchenkov@yandex.ru
г. Москва, Россия

Список литературы

  1. Wang, L., Guan, R.P. Disturbance Rejection and Reference Tracking via Observer Design / State Feedback Control and Kalman Filtering with MATLAB/Simulink Tutorials. - IEEE, 2022. - P. 195-251.
  2. Kondratenko, Yu.P., Kuntsevich, V.M., Chikrii, A.A., Gubarev, V.F. 5 Inverse Model Approach to Disturbance Rejection Problem / Advanced Control Systems: Theory and Applications. - River Publishers, 2021. - P. 129-166.
  3. Gómez-León, B.C., Aguilar-Orduña, M.A., Sira-Ramírez, H.J. A Disturbance Observer Based Control Scheme Using an Active Disturbance Rejection Controller: An Underactuated Moving Crane Example // 18th Int. Conf. on Electrical Engineering, Computing Science and Automatic Control (CCE). - Mexico City, Mexico, 2021. - P. 1-6.
  4. Mylvaganam, T., Sassano, M. Disturbance Attenuation by Measurement Feedback in Nonlinear Systems via Immersion and Algebraic Conditions // IEEE Transactions on Automatic Control. - Vol. 65, no. 2. - P. 854-860.
  5. Lu, P., Sandy, T., Buchli, J. Nonlinear Disturbance Attenuation Control of Hydraulic Robotics // 2018 IEEE Int. Conf. on Robotics and Biomimetics (ROBIO). - Kuala Lumpur, Malaysia, 2018. - P. 1451-1458.
  6. Якубович Е.Д. Решение одной задачи оптимального управления дискретной линейной системой // Автоматика и телемеханика. - 1975. - № 9. - С. 73-79.
  7. Vidyasagar, M. Optimal Rejection of Persistent Bounded Disturbances // IEEE Trans. Automat. Control. - 1986. - Vol. 31. - P. 527-535.
  8. Назин С.А., Поляк Б.Т., Топунов М.В. Подавление ограниченных внешних возмущений с помощью метода инвариантных эллипсоидов // Автоматика и телемеханика. - 2007. - № 3. - C. 106-125.
  9. Doyle, J.C., Glover, K., Khargonekar, P.P., Francis, B.A. State-space Solutions to Standard and Control Problems // IEEE Trans. Automat. Control. - 1989. - Vol. 34, no. 8. - P. 831-847.
  10. Doyle, J.C., Zhou, K, Bodenheimer, B. Optimal Control with Mixed and Performance Objectives // Proc. of the American Control Conference. - Pittsburg, 1989. - P. 2065-2070.
  11. Steinbuch, M., Bosgra, O.H. Necessary Conditions for Static and Fixed Order Dynamic Mixed / Optimal Control // Proc. of the American Control Conference. - Boston, 1991. - P. 1137-1142.
  12. Semyonov A.V., Vladimirov I.G., Kurdyukov A.P. Stochastic Approach to Optimization // Proc. of the 33rd IEEE Conf. Decision and Control. - Lake Buena Vista, 1994. - Vol. 3. - P. 2249-2250.
  13. Владимиров И.Г., Курдюков А.П., Семенов А.В. Анизотропия сигналов и энтропия линейных стационарных систем // Доклады РАН. - 1995. - Т. 342, № 5. - С. 583-585.
  14. Vladimirov, I.G., Kurdjukov, A.P., Semyonov, A.V. State-Space Solution to Anisotropy-Based Stochastic -optimization Problem // Proc. of the 13 IFAC World Congess. - San Francisco, 1996. - P. 427-432.
  15. Kustov, A.Yu. State-Space Formulas for Anisotropic Norm of Linear Discrete Time Varying Stochastic Systems // Proc. of the 15th Int. Conf. on Electrical Eng., Comp. Science and Aut. Control. - Mexico City, Mexico, 2018. - P. 1-6.
  16. Gershon, E., Shaked, U., Yaesh, I. Control and Filtering of Discrete-Time Stochastic Systems with Multiplicative Noise // Automatica. - 2001. - Vol. 37. - P. 409-417.
  17. Gershon, E., Shaked, U., Yaesh, I. Control and Estimation of State-multiplicative Linear Systems. - Lecture Notes in Control and Information Sciences. - Springer-Verlag, 2005. - Vol. 318.
  18. Shen, B., Wang, Z., Hung, Y.S. Distributed -consensus Filtering in Sensor Networks with Multiple Missing Measurements: The Finite-Horizon Case // Automatica. - 2010. - Vol. 46. - P. 1682-1688.
  19. Liu, S., Zhao, G., He, Y., Gao, C. Decentralized Moving Horizon Estimation for Networked Navigation System with Packet Dropouts // 39th Chinese Control Conference (CCC). - Shenyang, China, 2020. - P. 3381-3384.
  20. Юрченков А.В. Синтез анизотропийного управления для линейной дискретной системы с мультипликативными шумами // Известия РАН. Теория и системы управления. - 2018. - № 6. - С. 33-44.
  21. Юрченков А.В., Кустов А.Ю., Курдюков А.П. Условия ограниченности анизотропийной нормы системы с мультипликативными шумами // Доклады Академии наук. - 2016. - Т. 467, № 4. - С. 396-399.
  22. Belov, I.R., Yurchenkov, A.V., Kustov, A.Yu. Anisotropy-Based Bounded Real Lemma for Multiplicative Noise Systems: the Finite Horizon Case // Proc. of the 27th Med. Conf. on Control and Automation. - Akko, 2019. - P. 148-152.
  23. Kustov, A.Yu., Yurchenkov, A.V. Finite-horizon Anisotropy-based Estimation with Packet Dropouts // IFAC-PapersOnLine. - 2020. - Vol. 53, no. 2. - P. 4516-4520.
  24. Kustov, A.Yu., Yurchenkov, A.V. Finite-horizon Anisotropic Estimator Design in Sensor Networks // Proc. of the 59th IEEE Conf. on Decision and Control. - Jeju: IEEE, 2020. - P. 4330-433.
  25. Yurchenkov, A.V., Kustov, A.Yu. Sensor Network Adjusting Based on Anisotropic Criterion // Proc. of the 2021 9th Int. Conf. on Systems and Control. - Caen, 2021. - P. 268-273.
  26. Kustov, A.Yu., Timin, V.N., Yurchenkov, A.V. Boundedness Condition for Anisotropic Norm of Linear Discrete Time-invariant Systems with Multiplicative Noise // Journal of Physics: Conference Series. - 2021. - Vol. 1864. - P. 1-5.
  27. Diamond, P., Vladimirov, I.G., Kurdyukov, A.P., Semenov, A.V. Anisotropy-Based Performance Analysis of Linear Discrete Time Invariant Control Systems // Int. Journ. of Control. - 2001. - Vol. 74, no. 1. - P. 28-42.
  28. Diamond, P., Kloeden, P., Vladimirov, I.G. Mean Anisotropy of Homogeneous Gaussian Random Fields and Anisotropic Norms of Linear Translation-Invariant Operators on Multidimensional Integer Lattices // Journ. of Applied Mathematics and Stochastic Analysis. - 2003. - Vol. 16, no. 3. - P. 209-231.
  29. Tchaikovsky, M.M., Kurdyukov, A.P., Timin, V.N. Strict Anisotropic Norm Bounded Real Lemma in Terms of Inequalities // Proc. of the 18th IFAC World Congr. - Milan, 2011. - P. 2332-2337.
  30. Tchaikovsky, M.M. Static Output Feedback Anisotropic Controller Design by LMI-based Approach: General and Special Cases // Proc. of the American Control Conference. - Montreal, 2012. - P. 5208-5213.
  31. Iwasaki, T. and Skelton, R.E. The XY-centering Algorithm for the Dual LMI Problem: A New Approach to Fixed Order Design // Int. Journ. of Control. - 1995. - Vol. 62. - P. 1257-1272.
  32. Apkarian, P. and Tuan, H.D. Concave Programming in Control Theory // Journ. of Global Optimization. - 1999. - Vol. 15. - P. 343-370.
  33. Maximov, E.A., Kurdyukov, A.P., Vladimirov, I.G. Anisotropic Norm Bounded Real Lemma for Linear Discrete Time Varying Systems // Proc. of the 18th IFAC World Congr. - Milan, 2011. - P. 4701-4706.
  34. de Souza, C.E. On Stabilizing Properties of Solutions of the Riccati Difference Equation // IEEE Trans. on Automatic Control. - 1989. - Vol. 34. - P. 1313-1316.
  35. Chilali, M., Gahinet, P. Design with Pole Placement Constraints: An LMI Approach // IEEE Trans. on Automatic Control. - 1996. - Vol. 41, no. 3. - P. 358-367.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).