Inter-orbital Spacecraft Transfer: Trajectory Design by Iterating Parameter Values within a Data Grid
- Authors: Savvina E.V1
-
Affiliations:
- Issue: No 2 (2023)
- Pages: 65-74
- Section: Control of Moving Objects and Navigation
- URL: https://ogarev-online.ru/1819-3161/article/view/291586
- DOI: https://doi.org/10.25728/pu.2023.2.6
- ID: 291586
Cite item
Full Text
Abstract
This paper considers the problem of designing an optimal inter-orbital spacecraft transfer. We present a computational algorithm and modeling results of the optimal transfer trajectory between near-Earth elliptical orbits for spacecraft with a chemical booster and fixed thrust. The trajectory design procedure includes four stages as follows: a) formation of the primary ranges of initial approximations for typical optimization problems; b) iterative integration to find the domains of convergence for a typical variational problem; c) determination of the optimal position for each problem statement within the accepted ranges and its implementation by calculating the terminal conditions residuals; d) analysis of the results obtained. We use numerical methods of mathematical analysis and mathematical programming. The risk of “overstepping” the potentially optimal result is minimized by varying the accuracy at different stages of calculations. Based on the results, we improve the primary solution of the reference problem statement, identify the domains of convergence of solutions, and obtain the sets of initial approximation vectors ensuring convergence of the considered problems for further analysis. The results of this study can be used to develop further and refine an algorithm for selecting optimal initial approximations for different optimization problems (including spacecraft trajectory optimization as a typical one).
References
- Ведякова А.О., Милованович Е.В., Слита О.В. Тертычный-Даури В.Ю. Методы теории оптимального управления. – М.: Университет Итмо, 2021. – 111 с. [Vedyakova, A.O., Milovanovich, E.V., Slita, O.V., and Tertychny-Dauri, V.U. Methods of Optimal Control Theory. – Moscow: University ITMO, 2021. – 111 s. (In Russian)]
- Bard, Y. Nonlinear Parameter Estimation. – New York & London: Academic Press edition. – 1979. – 349 p.
- Петухов В.Г. Оптимизация межпланетных траекторий космических аппаратов с идеально-регулируемым двигателем методом продолжения. Космические исследования. – 2008. – Т. 46. – № 3. – С. 224–237. [Petukhov, V.G. Optimization of interplanetary trajectories of spacecraft with a ideally regulated engine by the continuation method. – Space Studies. – 2008. – Vol. 46, no. 3. – P. 224–237 (In Russian)]
- Kitrell, J.R., Mezaki, R., and Watson, C.C. Estimation of parameters for nonlinear least squares analysis // Industrial & Engineering Chemistry. – 1965. – Vol. 57. – P. 18–27.
- Hofmann, C., and Topputo, F. Embedded Homotopy for Convex Low-Thrust Trajectory Optimization with Operational Constraints // Proceedings of 2022 AAS/AIAA Astrodynamics Specialist Conference. – Charlotte, NC, USA, 2022. – P. 1–16.
- Jiang, F., Baoyin, F. and Li, J. Practical Techniques for Low-Thrust Trajectory Optimization with Homotopic Approach // Journal of Guidance, Control and Dynamics. – 2012. – Vol. 35, no. 1. – P. 245–258.
- Wu, D., Wu, C., Lin, F., et al. Analytical Costate Estimation by a Reference Trajectory-Based Least-Squares Method // Journal of Guidance, Control and Dynamics. 2022. – Vol. 45. – P. 1–9.
- Wu, D., Cheng, L., Gong, S., and Baoyin, H. Approximate time-optimal low-thrust rendezvous solutions between circular orbits // Aerospace Science and Technology. – 2022. – Vol. 131, Part A. – Art. No. 108011.
- Bevilaqua, R. Analytical Guidance Solutions for Spacecraft Planar Rephasing via Input Shaping // Journal of Guidance, Control. and Dynamics. – 2014. – Vol. 37. – doi: 10.2514/1.G000008.
- Wu, D., Wu, Ch., Lin, F., and Baoyin, H. An Atlas of Optimal Low-Thrust Rephasing Solutions in Circular Orbit // arXiv:2209.07418v1. – 2022. – doi: 10.48550/arXiv.2209.07418.
Supplementary files



