Параметрическая оптимизация нелинейной моделив задаче идентификации роста раковых клеток

Обложка
  • Авторы: Афанасьев В.Н1, Фролова Н.А2
  • Учреждения:
    1. Московский институт электроники и математики им. А.Н. Тихонова Национального исследовательского университета «Высшая школа экономики»
    2. Московский государственный университет им. М.В. Ломоносова
  • Выпуск: № 4 (2023)
  • Страницы: 3-13
  • Раздел: Анализ и синтез систем управления
  • URL: https://ogarev-online.ru/1819-3161/article/view/286635
  • DOI: https://doi.org/10.25728/pu.2023.4.1
  • ID: 286635

Цитировать

Полный текст

Аннотация

Представлен метод решения задачи идентификации нестационарных объектов с использованием соответствующих математических моделей с параметрической настройкой. Оценка отклонения переходных процессов объекта и его математической модели производится с применением квадратичного функционала качества, сама же задача параметрической настойки модели объекта относится к задачам условной оптимизации. Алгоритм параметрической оптимизации разработан с использованием свойства векторной проекции в пространстве Крейна и второго метода Ляпунова, обеспечивающего целенаправленное изменение параметров модели. Предложенный метод применяется для оценки параметров в модели роста раковых клеток. Нелинейная модель описывает взаимосвязь между популяциями нормальных, иммунных и опухолевых клеток, которую можно измерить в присутствии гауссовского белого шума. Численное моделирование иллюстрирует процедуру проектирования и показывает эффективность предложенного метода.

Об авторах

В. Н Афанасьев

Московский институт электроники и математики им. А.Н. Тихонова Национального исследовательского университета «Высшая школа экономики»

Email: afanval@mail.ru
Москва, Россия

Н. А Фролова

Московский государственный университет им. М.В. Ломоносова

Email: matveeva.nataljja@physics.msu
Москва, Россия

Список литературы

  1. Wensing, P.M., Kim, S., and Slotine, J.E. Linear Matrix Inequalities for Physically Consistent Inertial Parameter Identification: A Statistical Perspective on the Mass Distribution // IEEE Robotics and Automation Letters. – 2017. – Vol. 3, no. 1. – P. 60–67.
  2. Brunton, S.L., Proctor, J.L., and Kutz, J.N. Discovering Governing Equations from Data by Sparse Identification of Nonlinear Dynamical Systems // Proceedings of the National Academy of Sciences. – 2016. – Vol. 113, no. 15. – P. 3932–3937.
  3. Tabo, Z., Kalinda, C., Breuer, L., and Albrecht, C. Adapting Strategies for Effective Schistosomiasis Prevention: A Mathematical Modeling Approach // Mathematics. – 2023. – Vol. 11, no. 12. – Art. no. 2609. – DOI: https://doi.org/10.3390/math11122609.
  4. Wu, L., Liu, F., Gu, H., and Wang, P. Adaptive Finite-Time Control of Stochastic Genetic Regulatory Networks with Time-Varying Delays // Mathematics. – 2022. – Vol. 10, no. 21. – Art. no. 4071. – DOI: https://doi.org/10.3390/math10214071.
  5. Жирабок А. Н., Зуев А. В., Сергиенко О. Ю., Шумский А. Е. Идентификация дефектов в нелинейных динамических системах и их датчиках на основе скользящих наблюдателей // Автоматика и телемеханика. – 2022. – № 2. – С. 63–89. [Zhirabok, A.N., Shumsky, A.E., Zuev, A.V., Sergiyenko, O. Identification of Faults in Nonlinear Dynamical Systems and Their Sensors Based on Sliding Mode Observers // Automation and Remote Control. – 2022. – Vol. 83, no. 2. – P. 214–236.]
  6. Бобцов А.А., Николаев Н.А., Оськина О.В., Низовцев С.И. Идентификация нестационарного параметра незашумленного синусоидального сигнала // Автоматика и телемеханика. – 2022. – № 7. – С. 137–151. [Bobtsov, A.A., Nikolaev, N.A., Oskina, O.V., Nizovtsev, S.I. Identification of Time-Varying Parameter of Noiseless Sinusoidal Signal // Automation and Remote Control. – 2022. – Vol. 83, no. 7. – P. 1123–1135.]
  7. Афанасьев В.Н., Каперко А.Ф., Кулагин В.П., Колюбин В.А. метод адаптивной фильтрации в задаче восстановления параметров космического излучения // Автоматика и телемеханика. – 2017. – № 3. – С. 15–33. [Afanas’ev, V.N., Kaperko, A.F., Kulagin, V.P., Kolyubin, V.A. Method of Adaptive filtering in the problem of restoring parameters of cosmic radiation. Automation and Remote Control. – 2017. – Vol. 78, no. 3. – P. 397–412.]
  8. Deng, X., Huang, Y., Xu, B., and Tao, L. Position and Attitude Tracking Finite-Time Adaptive Control for a VTOL Aircraft Using Global Fast Terminal Sliding Mode Control // Mathematics. – 2023. – Vol. 11, no. 12. – Art. no. 2732. – DOI: https://doi.org/10.3390/math11122732.
  9. Афанасьев В.Н. Управление нелинейными неопределенными динамическими объектами. – М.: ЛЕНАНД, 2015. – 224 с. [Afanas'ev, V.N. Upravlenie nelineinymi neopredelennymi dinamicheskimi ob"ektami. – M.: LENAND, 2015. – 224 s. (In Russian)]
  10. Isermann, R., Minchef, M. An Identification of Dynamic Systems. An Introduction with Applications. – Berlin, Heidelberg: Springer, 2011. – 705 p.
  11. Farza, M., Bouraoui, I., Menard, T., et al. Adaptive Observers for a Class of Uniformly Observable Systems with Nonlinear Parametrization and Sampled Outputs // Automatica. – 2014. – Vol. 50, no. 11. – Р. 2951–2960.
  12. Летов А.М. Динамика полета и управление. – М: Наука, 1969. – 360 с. [Letov, A.M. Dinamika poleta i upravlenie. – M: Nauka, 1969. – 360 s.]
  13. Петров Б.Н., Крутько П.Д. Алгоритмическое конструирование оптимальных регуляторов при неполной информации о состоянии объекта и возмущений // Изв. АН СССР. Техническая кибернетика. – 1972. – № 6. – С. 188–199. [Petrov, B.N., Krut'ko, P.D. Algoritmicheskoe konstruirovanie optimal'nyh re-gulyatorov pri nepolnoj informacii o sostoyanii ob"ekta i vozmushchenij // Izv. AN SSSR. Tekhnicheskaya kibernetika. – 1972. – No. 6. – P. 188–199. (In Russian)]
  14. Цыпкин Я.З. Адаптация и обучение в автоматических системах. – М.: Наука, 1968. – 400 с. [Cypkin, Ya.Z. Adaptaciya i obuchenie v avtomaticheskih sistemah. – M.: Nauka, 1968. – 400 s. (In Russian)]
  15. Zhang, Q. Adaptive Observer for Multiple-Input-Multiple-Output (MIMO) Linear Time Varying Systems // IEEE Trans. on Automatic Control. – 2002. – Vol. 47, no. 3. – P. 525–529.
  16. Toth, R., Willems, J., Heuberger, P., Van den Hof, P. The Behavioral Approach to Linear Parameter Varying Systems // IEEE Trans. Automatic Control. – 2011. – Vol. 56, no. 11. – P. 2499–2514.
  17. Hassibi, B., Sayed, A.H., and Kailath, T. Indefinite Quadratic Estimation and Control: A Unified Approach to H2 and Hinf Theories. – Philadelphia: SIAM, 1999. – 555 p.
  18. Iohvidov, I.S., Krein, M.G., Longer, H. Introduction to the Spectral Theory of Operators in Spaces with Indefinite Metric. – Berlin: Academie Verlag, 1982.
  19. Лакеев А.В., Русанов В.А., Козырев В.В. К реализации непрерывных квазилинейных систем с автономными операторами в гильбертовом пространстве // Проблемы управления. – 2013. – № 1. – С. 7–18. [Lakeev, A.V., Rusanov, V.A., Kozerev, V.A. On Realization of Quasi-Linear Systems Described by Stationary Differential Equations in Hilbert Space // Control Sciences. – 2013. – No. 1. – P. 7–18. (In Russian)]
  20. dePillis, L.G., Radunskaya, A.E. The Dynamics of an Optimally Controlled Tumor Model: A Case Study // Mathematical and Computer Modelling. – 2003. – Vol. 37, no. 11. – P. 1221–1244.
  21. Itik, M., Salamci, M.U., Banks, S.P. Optimal Control of Drug Therapy in Cancer Treatment // Nonlinear Analysis. – 2009. – Vol. 71. – Р. 1473–1486.
  22. Kadiri, M., Louaked, M., and Trabelsi, S. Optimal Control and Parameters Identification for the Cahn–Hilliard Equations Modeling Tumor Growth // Mathematics. – 2023. – Vol. 11., no. 7. – Art. no. 1607. – DOI: https://doi.org/10.3390/math11071607.
  23. Batmani, Y., Khaloozadech, H. Optimal Chemotherapy in Cancer Treatment: State Dependent Riccati Equation Control and Extended Kalman Filter // Optimal Control Applications and Methods. – 2012. – Vol. 34. – Р. 562–577.
  24. Babaei, N., Salamci, M.U. Personalized Drug Administration for Cancer Treatment Using Model Reference Adaptive Control // Journal of Theoretical Biology. – 2015. – Vol. 371. – P. 24–44.
  25. Романовский Ю.М., Степанова Н.В., Чернавский Д.С. Математическое моделирование в биофизике. Монография. – М.: Наука, 1975. – 344 с. [Romanovskij, Yu.M., Stepanova, N.V., Chernavskij, D.S. Matematicheskoe modelirovanie v biofizike. Monografiya. – M.: Nauka, 1975. – 344 s. (In Russian)]

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).