Scenario-Cognitive Modeling of Complex Systems Based on Event-Driven Identification of Factor Dynamics

Capa

Citar

Texto integral

Resumo

This paper is devoted to methodological problems of increasing the effectiveness of scenario analysis and modeling of development processes in socio-economic systems. The corresponding results can be used in management decision support systems for proactive evaluation of their effectiveness. Several limitations of the traditional approach to scenario-cognitive modeling are considered; due to these limitations, the resulting scenario neglects key events directly affecting the assessment of the current situation and decision-making. A novel approach is proposed to identify and analyze the dynamics of factor values when studying the model as well as to form additional scenario-event relationships between the factors in order to increase the adequacy of the model to the situation. A computational algorithm is developed to analyze the dynamics of factor values of the model. This algorithm is implemented and tested within the program-analytical complex of scenario modeling. Finally, an example of using the algorithm is given.

Sobre autores

I. Chernov

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Email: ichernov@gmail.com
Moscow, Russia

Bibliografia

  1. Модели и методы анализа и синтеза сценариев развития социально-экономических систем: в 2-х кн. / Под ред. В.Л. Шульца и В.В. Кульбы. – М.: Наука, 2012. Кн. 1. – 304 с., кн. 2. – 358 с. [Modeli i metody analiza i sinteza scenariev razvitiya so-cial'no-ekonomicheskih sistem: v 2-h kn. / Pod red. V.L. Shul'ca i V.V. Kul'by. – M.: Nauka, 2012. Kn. 1. – 304 s., kn. 2. – 358 s. (In Russian)]
  2. Дранко О.И., Новиков Д.А., Райков А.Н., Чернов И.В. Управление развитием региона. Моделирование возможностей. – М.: URSS, ООО «ЛЕНАНД», 2023. – 432 с. [Dranko O.I., Novikov D.A., Rajkov A.N., Chernov I.V. Upravlenie razvitiem regiona. Modelirovanie vozmozhnostej. – M.: URSS, OOO «LENAND», 2023. – 432 s. (In Russian)]
  3. Авдеева З.К., Коврига С.В. О постановке задач управления ситуацией со многими активными субъектами с использо-ванием когнитивных карт // Управление большими системами. – 2017. – Вып. 68. – С. 74–99. [Avdeeva, Z.K., Kovriga S.V. On the Statement of Control Problems of the Situation with Many Active Stakeholders with Use of Cognitive Maps // Large-Scale Systems Control. – 2017. – Vol. 68. – P. 74–99. (In Russian)]
  4. Plonsky, O., Apel, R., Ert, E., et al. Predicting Human Decisions with Behavioral Theories and Machine Learning // arXiv. – 2019. – DOI: https://doi.org/10.48550/arXiv.1904.06866.
  5. Stulp, F., and Sigaud, O. Many Regression Algorithms, One Unified Model: A Review // Neural Networks. – 2015. – Vol. 69. – P. 60–79.
  6. Wooldridge, J.M. Introductory Econometrics: A Modern Approach // Boston: Cengage Learning, 2019.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).