Synchronization of a distributed experiment with feedback (based on ieee 1588 – ptp and white rabbit)

Cover Page

Cite item

Full Text

Abstract

We propose a method decentralized executed synchronous initiation of actions of a group of physical objects participants of a controlled experiment. Here, the objects detect the occurrence of events, which require joint actions of all objects, and without the participation of the control center create a common command to initiate the actions of the objects simultaneously or with additional delays prescribed for each object. For this purpose, objects exchange messages via a signal repeater that does not contain computational means, form a common command in it, and perform auxiliary calculations. Necessary for these actions the simultaneous arrival in the repeater messages objects with the alignment of their binary digits of the same name is provided. In general, in the method, a group of objects functions as a distributed control system, which corrects the execution of the experiment with minimum delays in response to the appearance of unforeseen or expected at unknown points in time events.

About the authors

Gennady Stetsyura

V.A. Trapeznikov Institute of Control Sciences of RAS

Author for correspondence.
Email: gstetsura@mail.ru
Moscow

References

  1. Стецюра Г. Г. Децентрализованная автономная синхронизация процессов взаимодействия мобильных объектов // Проблемы управления. – 2020. – № 6. – С. 47–56. – DOI: http://doi.org/10.25728/pu.2020.6.5.
  2. Стецюра Г. Г. Синхронное выполнение групповых операций в распределенных компонентах суперкомпьютеров и компьютерных кластерах // Доклад на НСКФ 2022. – 2022. – URL: https://2022.nscf.ru/TesisAll/02_Apparatura/341_StetsuraGG.pdf.
  3. Bosiljevac M., Babić D., Sipus Z. Temperature-Stable LED-Based Light Source without Temperature Control // Proc. of SPIE OPTO, San Francisco, CA, USA. – 2016. – Vol. 9754. – P. 1–6. – doi: 10.1117/12.2211576.
  4. Girela-López F., López-Jiménez J., Jiménez-López M., Rodríguez R., Ros E., Díaz J. IEEE 1588 High Accuracy Default Profile: Applications and Challenges // IEEE Access. – 2020. – Vol. 8. – P. 45211–45220. – doi: 10.1109/ACCESS.2020.297833.
  5. Goetz P. G., Rabinovich W. S., Mahon R., Murphy J. L. Modulating Retroreflector Lasercom Systems at the Naval Research Laboratory. – 2010. – URL: https://ieeexplore.ieee.org/document/5680205/.
  6. Gomez A., Shi K., Quintana C., Maher R. et al. Design and Demonstration of a 400 Gb/s Indoor Optical Wireless Communications Link // Journal of Lightwave Technology. – 2016. – Vol. 34, Iss. 22. – P. 5332–5339.
  7. Gutiérrez-Rivas J. L., Torres-González F., Ros E. J., Díaz J. Enhancing Rabbit Synchronization Stability and Scalability Using P2P Transparent and Hybrid Clocks // IEEE Trans. on Industrial Informatics. – 2021. – Vol. 17, No. 11. – P. 7316–7324. – doi: 10.1109/TII.2021.3054365.
  8. Idrees Z., Granados J., Sun Y., Latif S., Gong L., Zou Z., Zheng L. IEEE 1588 for Clock Synchronization in Industrial IoT and Related Applications: A Review on Contributing Technologies, Protocols and Enhancement Methodologies // IEEE Access. – 2020. – Vol. 8. – P. 155660–155678. – URL: https://ieeexplore.ieee.org/ielx7/6287639/8948470/09154372.pdf.
  9. IEEE 1588-2019 – IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems // IEEE Instrumentation and Measurement Society. – 2020. – URL: https://standards.ieee.org/standard/1588-2019.html.
  10. Argaria D., Vesco A. Trusted GNSS-Based Time Synchronization for Industry 4.0 Applications // Appl. Sci. – 2021. – Vol. 11. – P. 8288. – URL: https://doi.org/10.3390/app11188288.
  11. Moreira P., Darwazeh I. Digital femtosecond time difference circuit for CERN’s timing system. – 2011. – URL: https://www.ee.ucl.ac.uk/lcs/previous/LCS2011/LCS1136.pdf.
  12. Moreira P. Timing Signals and Radio Frequency Distribution Using Ethernet Networks for High Energy Physics Applications. – PhD thesis, 2015.
  13. Neelam Rathore H., Sharma L., Roy A. Clock Comparison with an Ultra-Stable Optical Fibre Link Utilizing White Rabbit Network. – URSI GASS, 2020. – URL: https://www.researchgate.net/publication/347449111.
  14. Rabinovich W. S., Goetz P. G., Mahon R. et al. 45-Mbit/s Cat’s-Eye Modulating Retroreflectors // Optical Engineering. – 2007. – Vol. 46, No. 10. – P. 1–8.
  15. Rizzi M. Digital Dual Mixer Time Difference: Phase Noise & Stability. – CERN, 2017. – P. 38. – URL: https://white-rabbit.web.cern.ch/documents/DDMTD_for_Sub-ns_Synchronization.pdf.
  16. Rösel K., Helm M., Zirngibl J., Stubbe H. Current Developments of IEEE 1588 (Precision Time Protocol). – doi: 10.2313/NET-2021-05-1_04.
  17. Sliwczynski Ł., Krehlik P., Buczek Ł., Schnatz H. Picoseconds-Accurate Fiber-Optic Time Transfer With Relative Stabilization of Lasers Wavelengths // Journal of Lightwave Technology. – 2020. – Vol. 38, No. 18. – P. 5056–5063.
  18. The White Rabbit Project. – 2022. – URL: http://white-rabbit.web.cern.ch/.
  19. Waterman E., Helm M., Zirngibl J., Stubbe H. White Rabbit: High Precision PTP // Seminar IITM WS 20/21, Network Architectures and Services. – 2021. – doi: 10.2313/NET-2021-05-1_14.
  20. Zhu Y., Wang G. Research on Retro-Reflecting Modulation in Space Optical Communication System // IOP Conf. Series: Earth and Environmental Science. – 2018. – Vol. 108, Iss. 3. – P. 1–7. – doi: 10.1088/1755-1315/108/3/032060.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).