Forecasting of the remaining useful life in conditions of small data sample

Cover Page

Cite item

Full Text

Abstract

In the article a method for forecasting the residual life of equipment using deep learning is proposed. The method is applicable in cases with a small amount of information about data failures, where existing classical methods may not provide the required accuracy. The process of maintaining the equipment in working condition is one of the most important processes in the operation of the equipment. At the same time, the maintenance process often suffers from inefficiency. Therefore, forecasting methods were developed, on the basis of which the concept of proactive maintenance process management was built, which allows optimizing the structure and costs of equipment management throughout the life cycle. However, these methods may show insufficient accuracy if there is not enough data to train them, for example, due to the rarity of equipment failures. To solve this problem, a new prediction method based on deep learning is proposed that can improve the prediction accuracy. In this method, the continuous prediction of the remaining service life over the entire interval is replaced by a model for generating signals containing the calculated prediction.

About the authors

Konstantin Sergeevich Zadiran

Volgograd state technical university

Author for correspondence.
Email: konstantin.zadiran@gmail.com
Volgograd

Maxim Vladimirovich Shcherbakov

Volgograd state technical university

Email: maxim.shcherbakov@vstu.ru
Volgograd

Cuong Kvong Sai

Volgograd state technical university

Email: svcuonghvktqs@gmail.com
Volgograd

References

  1. Гунина И. А., Шкарупета Е. В., Решетов В. В. Прорывное технологическое развитие промышленных комплексов в условиях цифровой трансформации // Инновационные кластеры цифровой экономики: теория и практика. – 2018. – С. 535–554.
  2. Куприяновский В. П., Намёт Д. Е., Дрожжинов В. И., Куприяновская Ю. В., Иванов М. О. Интернет вещей на промышленных предприятиях // International Journal of Open Information Technologies. – 2016. – №12. – С. 156–161.
  3. Лысенко С. В., Тен Э. В. Об оценке остаточного ресурса башенных кранов // Проблемы современной науки и образования. – 2016. – №1. – С. 98–102.
  4. Сай Ван Квонг, Щербаков М. В. Метод прогнозирования остаточного ресурса на основе обработки данных многообъектных сложных систем // Прикаспийский журнал: управление и высокие технологии. – 2019. – №1(45). – С. 33–44.
  5. Шилова Е. В., Дьяков А. Р. О феномене четвёртой промышленной революции и его влиянии на экономику и управление // Вестник Прикамского социального института. – 2018. – №3(81). – С. 86–95.
  6. A Grammar Of Data Manipulation – Dplur. – URL: https://dplyr.tidyverse.org (дата обращения: 03.04.2022).
  7. Cernuda C. On the relevance of preprocessing in predictive maintenance for dynamic systems // В кн.: Lughofer E., Sayed-Mouchaweh M. (Eds.). Predictive Maintenance in Dynamic Systems. – Cham: Springer, 2019. – P. 53–93.
  8. Cheng J. C., Chen W., Chen K., Wang Q. Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms // Automation in Construction. – 2020. – Vol. 112. – P. 1–21.
  9. Che-Sheng H., Jehn-Ruey J. Remaining useful life estimation using long short-term memory deep learning // Proc. IEEE Int. Conf. on Applied System Invention (ICASI). – 2018. – P. 58–61.
  10. CRAN – Packages. – URL: https://cran.r-project.org/web/packages/ (дата обращения: 03.04.2022).
  11. Forecast Package – RDocumentation. – URL: https://www.rdocumentation.org/packages/forecast (дата обращения: 03.04.2022).
  12. Goebel K., Saha B., Saxena A., Celaya J. R., Christophersen J. P. Prognostics in battery health management // IEEE Instrumentation & Measurement Magazine. – 2008. – Vol. 8. – P. 33–40.
  13. Huang Z. Y., Xu Z. G., Wang W. H., Sun Y. X. Remaining useful life prediction for a nonlinear heterogeneous Wiener process model with an adaptive drift // IEEE Trans. on Reliability. – 2015. – Vol. 64, No. 2. – P. 687–700.
  14. Identify and replace outliers in time series. – URL: https://pkg.robjhyndman.com/forecast/reference/tsoutliers.html (дата обращения: 03.04.2022).
  15. Lei Y., Li N., Gontarz S., Lin J., Radkowski S., Dybala J. A model-based method for remaining useful life prediction of machinery // IEEE Trans. on Reliability. – 2017. – Vol. 65. – P. 1314–1326.
  16. Li X., Ding Q., Sun J. Remaining useful life estimation in prognostics using deep convolution neural networks // Reliability Engineering & System Safety. – 2018. – Vol. 172. – P. 1–11.
  17. Liu J., Wang W., Ma F., Yang Y. B., Yang C. S. A data-model-fusion prognostic framework for dynamic system state forecasting // Engineering Applications of Artificial Intelligence. – 2012. – Vol. 25, No. 4. – P. 814–823.
  18. Patil S., Patil A., Handikherkar V., Desai S., Phalle V. M., Kazi F. S. Remaining useful life (RUL) prediction of rolling element bearing using random forest and gradient boosting technique // ASME Int. Mech. Eng. Congress and Exposition. – 2018. – P. 1–7.
  19. Ran Y., Zhou X., Lin P., Wen Y., Deng R. A survey of predictive maintenance: systems, purposes and approaches // IEEE Communications Surveys & Tutorials. – 2019. – P. 1–36.
  20. Shcherbakov M. V. A survey of forecast error measures // World Applied Sciences Journal. – 2013. – No. 24. – P. 171–176.
  21. Xiongzi C., Jinsong Y., Diyin T., Yingxun W. Remaining useful life prognostic estimation for aircraft subsystems or components: A review // Proc. 10th IEEE Int. Conf. on Electronic Measurement & Instruments (ICEMI). – 2011. – Vol. 2. – P. 94.
  22. Yan M., Wang X., Wang B., Chang M., Muhammad I. Bearing remaining useful life prediction using support vector machine and hybrid degradation tracking model // ISA Transactions. – 2020. – Vol. 98. – P. 471–482.
  23. Yu J. Remaining useful life prediction for lithium-ion batteries using a quantum particle swarm optimization-based particle filter // Quality Engineering. – 2017. – Vol. 29. – P. 536–546.
  24. Zhang Z., Si X., Hu C., Ley Y. Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods // European Journal of Operational Research. – 2018. – Vol. 271, No. 3. – P. 775–796.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).