Risk indicators of cascading failures in interconnected network structures

Cover Page

Cite item

Full Text

Abstract

The behavior of real systems is often stochastic, and the connections between their elements can be adequately described as correlations. In recent years, there have been trends of increasing and complicating modern networks with the growth of their dependence on each other. We observe how several networks are combined into one interdependent network structure. This leads to an increase in the risks that the failure of nodes in one network may lead to the failure of dependent nodes in other networks. As a result of such failures, catastrophic cascade failures can occur in such interconnected network structures. Given the scale of such structures, which are often critical infrastructures, this problem becomes very relevant. The article introduces a scalar measure of the relationship between several arbitrarily distributed continuous random vectors. It allows you to assess the closeness of the relationship between different subsystems (networks) in network structures. Applied to Gaussian model network structures, the influence of the closeness of the relationship between subsystems on the risk of cascading failures has been studied. The probability of such failures was used as the risk value. As an indicator of the risk of cascading failures in the network structure, it is proposed to use the coefficient of correlation between its subsystems. And to reduce the risk of cascading failures in the network structure, it is necessary to reduce the tightness of correlation between the most interconnected elements of subsystems.

About the authors

Alexander Nikolaevich Tyrsin

Science and Engineering Center “Reliability and Resource of Large Systems and Machines”, Ural Branch of RAS, Yekaterinburg, Institute of Economics

Author for correspondence.
Email: at2001@yandex.ru
Ural Branch of RAS

Stanislav Evgen'evich Kashcheev

South-Ural State University

Email: kashcheevs@susu.ru
Chelyabinsk

References

  1. Алексеев В. В., Соложенцев Е. Д. Логико-вероятностный подход к управлению риском и эффективностью в структурно-сложных системах // Информационно-управляющие системы. – 2009. – №6(43). – С. 67–71.
  2. Ашнина Ю. А., Борисов А. В., Борисова Н. И. Развитие инфраструктуры современного города: социальные и экономические аспекты // NovaInfo. – 2015. – №39. – С. 177–183.
  3. Булатов В. В. Введение в математические методы моделирования сложных систем. – М.: ОнтоПринт, 2018. – 338 с.
  4. Михайлов Г. А., Войтишек А. В. Численное статистическое моделирование. Методы Монте-Карло. – М.: Издательский центр «Академия», 2006. – 368 с.
  5. Новиков Д. А. Сетевые структуры и организационные системы. – М.: ИПУ РАН, 2003. – 102 с.
  6. Современный философский словарь: 2-е изд. / Под общ. ред. В. Е. Кемерова. – М.: ПАНПРИНТ, 1998. – 1064 с.
  7. Тырсин А. Н. Мера совместной корреляционной зависимости многомерных случайных величин // Заводская лаборатория. Диагностика материалов. – 2014. – Т. 80, №1. – С. 76–80.
  8. Тырсин А. Н. Скалярная мера взаимосвязи между несколькими случайными векторами // Заводская лаборатория. Диагностика материалов. – 2022. – Т. 88, №3. – С. 73–80.
  9. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: В 3 т. – Т. 1. – 8-е изд. – М.: ФИЗМАТЛИТ, 2003. – 680 с.
  10. Хардле В. Прикладная непараметрическая регрессия: Пер. с англ. – М.: Мир, 1993. – 349 с.
  11. Behrensdorf J., Broggi M., Beer M. Reliability Analysis of Networks Interconnected with Copulas // ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering. – 2019. – Vol. 5. – P. 041006-9.
  12. Buldyrev S. V., Parshani R., Paul G., Stanley H. E., Havlin S. Catastrophic cascade of failures in interdependent networks // Nature. – 2010. – Vol. 464. – P. 1025–1028.
  13. Cherubini U., Luciano E., Vecchiato W. Copula Methods in Finance. – Wiley, Chichester, UK, 2004.
  14. Engle R. F. Anticipating Correlations: A New Paradigm for Risk Management. – Princeton University Press, 2009.
  15. Goodwin B. K., Hungerford A. Copula-Based Models of Systemic Risk in US Agriculture: Implications for Crop Insurance and Reinsurance Contracts // American Journal of Agricultural Economics. – 2014. – Vol. 97, No. 3. – P. 879–896.
  16. Gorban A. N., Tyukina T. A., Pokidysheva L. I., Smirnova E. V. Dynamic and thermodynamic models of adaptation // Physics of Life Reviews. – 2021. – Vol. 37. – P. 17–64.
  17. Joe H. Dependence Modeling with Copulas. – Chapman and Hall/CRC, New York, 2014.
  18. Laprie J.-C., Kanoun K., Kaniche M. Modeling interdependencies between the electricity and information infrastructures // SAFECOMP-2007. – 2007. – Vol. 4680. – P. 54–67.
  19. Peña D., Rodriguez J. Descriptive Measures of Multivariate Scatter and Linear Dependence // Journal of Multivariate Analysis. – 2003. – Vol. 85, No. 2. – P. 361–374.
  20. Ram M., Singh S. B. Analysis of Reliability Characteristics of a Complex Engineering System under Copula // Journal of Reliability and Statistical Studies. – 2009. – Vol. 2, No. 1. – P. 91–102.
  21. Rinaldi S., Peerenboom J., Kelly T. Identifying, understanding, and analyzing critical infrastructure interdependencies // IEEE Control Systems Magazine. – 2001. – Vol. 21. – P. 11–25.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).