Simulation of a water hammer in an axial piston pump
- Authors: Tretyakova E.A.1
-
Affiliations:
- V.A. Trapeznikov Institute of Control Sciences of RAS
- Issue: No 101 (2023)
- Pages: 86-96
- Section: Control of technological systems and processes
- URL: https://ogarev-online.ru/1819-2440/article/view/360592
- DOI: https://doi.org/10.25728/ubs.2023.101.5
- ID: 360592
Cite item
Full Text
Abstract
The paper presents an approach to modeling an axial piston pump compact series with an inclined block and performed a hydrodynamic calculation. Existing models of the axial piston pump were studied, during which a jump in flow was found at the time of water hammer, but the "shock magnitude" was unknown. During modeling, assumptions related to the properties of the working fluid and the geometry of the plunger were introduced, and temperature changes were also not taken into account. Four stages were identified in the modeling process. The first stage involves the creation of a fluid volume - a fluid model from a solid model of the pump. In the second step, a mesh was created. The third stage is devoted to creating macros for the movement of the previously selected pump components. At the fourth stage, all prepared parts of the model are uploaded to Fluent 18.1 and the calculation parameters are set. The adequacy of the resulting model was assessed by comparing the simulated total pump flow with the theoretical flow calculated analytically. Upon the simulation, the amplitude of the pressure jump was calculated during the water hammer in the operating mode of the pump at the maximum discharge pressure. A method was proposed to reduce it. Changes have been made to the design of the plunger. The strength of the modified structure was calculated.
Keywords
About the authors
Ekaterina Alekseevna Tretyakova
V.A. Trapeznikov Institute of Control Sciences of RAS
Author for correspondence.
Email: ekaterina_tretikova@mail.ru
Moscow
References
- Белов Н. А., Никитин О. Ф. Профилирование проточной части нагнетательного канала аксиально-поршневого насоса // МГТУ им. Н. Э. Баумана, Москва, 2019. – 53 с.
- Николенко И. В., Рыжаков А. Н. Математическое моделирование рабочего процесса в гидроприводе на основе регулируемых аксиально-поршневых гидромашин // Наука и образование. МГТУ им. Баумана. – 2015. – №9. – С. 17–31.
- Пузанов А. В. Гидромеханический анализ ходовой части аксиально-поршневой гидромашины // Вестник Брянского государственного технического университета. – 2016. – №4. – С. 161–169.
- Пузанов А. В., Ершов Е. А. Моделирование индикаторной диаграммы аксиально-плунжерной гидромашины // Вестник Брянского государственного технического университета. – 2017. – №3(56). – С. 29–35.
- Родионов Л. В. и др. Методические указания для курсового проекта «Проектирование объемного насоса»: метод. указания. – Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2011. – 32 с.
- Berta G. L., Casoli P., Vacca A. Simulation model of axial piston pumps inclusive of cavitation // Proc. of Fluid Power Systems and Technology Division (FPSTD), ASME International Mechanical Engineering Congress and Exposition, 2015.
- Bin Zhang, Jien Ma, Haocen Hong, Huayong Yang, Youtong Fang. Analysis of the flow dynamics characteristics of an axial piston pump based on the computational fluid dynamics method // Journal of Aeronautics. Engineering Applications of Computational Fluid Mechanics. – 2017. – Vol. 11. – P. 86–95.
- Edge K. A., Darling J. Cylinder pressure transients in oil hydraulic pump with sliding plate valves. – School of Engineering, University of Bath, 2016. – 45 p.
- Guan Changbin, Jiao Zongxia, He Shouzhan. Theoretical study of flow ripple for an aviation axial-piston pump with damping holes in valve // Journal of Aeronautics. School of Automation Science and Engineering, Beihang University, Beijing, China, 2013. – 182 p.
- Ivantysynova M. The Piston Cylinder Assembly in Piston Machines // A Long Journey of Discovery. Maha Fluid Power Research Center, Purdue University, USA, 2013. – 25 p.
Supplementary files


