Analysis of the three phase queuing system with common buffer

Cover Page

Cite item

Full Text

Abstract

This paper examines the non-stationary performance metrics of a three-phase queuing system with a Poisson input flow, exponentially distributed service time across all phases, and a constraint on the total size of the shared buffer. A system of Kolmogorov differential equations is written using specially introduced functions that account for the system's operating principles. A probability translation matrix method is used to solve the system of equations. Expressions are derived for finding the loss probability and system performance. A system with a buffer size of three is considered as an example. The duration of the transient mode is analyzed as a function of the ratios of service rates in individual service phases. It is concluded that the service rates in the first and second phases have the greatest impact on the duration of the transient mode. The dependences of the maximum values of the non-stationary loss probability and the corresponding stationary probabilities for various service rates are analyzed. The analysis of the system performance metrics is conducted for parameters corresponding to modern optical networks. The obtained conclusions are of interest for the design of high-performance computing systems.

About the authors

Konstantin Anatol'evich Vytovtov

V.A. Trapeznikov Institute of Control Sciences of RAS

Email: vytovtov_konstan@mail.ru
Moscow

Elizaveta Aleksandrovna Barabanova

V.A. Trapeznikov Institute of Control Sciences of RAS

Email: elizavetaalex@yandex.ru
Moscow

Ekaterina Vladislavovna Shabanova

V.A. Trapeznikov Institute of Control Sciences of RAS

Email: shabanovaev@gmail.com
Moscow

References

  1. 1. ВИШНЕВСКИЙ В.М., ДУДИН А.Н., КЛИМЕНЮК В.И.Стохастические системы с коррелированными потоками.Теория и применение в телекоммуникационных сетях. – М.:Изд-во «ТЕХНОСФЕРА», 2018. –564 с.
  2. 2. ВИШНЕВСКИЙ В.М., ВЫТОВТОВ К.А., БАРАБАНО-ВА Е.А. Исследование переходного режима двухфазной си-стемы массового обслуживания с ограничением на суммар-ный размер буфера // Автоматика и телемеханика. – 2024. –№1. – С. 64—82.
  3. 3. ГОРБУНОВА А.В., ЛЕБЕДЕВ А.В. Двумерные распределе-ния максимальных остаточных времен обслуживания в бес-конечнолинейных системах с разделением заявок // Пробл.передачи информ. – 2020. – Т. 56, вып. 1. – С. 80—98;Problems Inform. Transmission. – 2020. – Vol. 56, Iss. 1. –P. 73–90.
  4. 4. КОВАЛЕВ И.А., САТИН Я.А., СИНИЦИНА А.В. и др. Ободном подходе к оцениванию скорости сходимости неста-ционарных марковских моделей систем обслуживания // Ин-форм. и её применение. – 2022. – Т. 16. Вып. 3. – С. 75–82.
  5. 5. СЕМЕНОВА О.В. Стационарное распределение вероятно-стей состояний СМО с двумя режимами функционирова-ния и потоком катастрофических сбоев // Автоматика ителемеханика. – 2002. – №10 – С. 73–86.
  6. 6. ФАРХАДОВ М.П., ПЕТУХОВА Н.В., ЕФРОСИНИН Д.В.и др. Двухфазная модель с неограниченными очередями длярасчета характеристик и оптимизации речевых порталовсамообслуживания // Пробл.управл.–2010.–№6.–С.53–57.
  7. 7. AL-RAWI Z.R., AL SHBOUL K.M.S. A Single Server Queuewith Coxian-2 Service and One-Phase Vacation (M/C-2/M/1Queue) // Open J. Appl. Sci. 2021.–Vol.11,No.6.–P.766–774.
  8. 8. BARABANOVA E.A., VYTOVTOV K.A.,VYSHNEVSKY V.M. et al. High-capacity strictly non-blocking optical switches based on new dual principle // J.Phys.: Conf. Ser. – 2021. – Vol. 2091, No. 1. – URL: https://iopscience.iop.org/article/10.1088/1742-6596/2091/1/012040(дата обращения: 06.04.2025).
  9. 9. DUDIN A.N., KLIMENOK V.I., VISHNEVSKY V.M. Methodsto Study Queuing Systems with Correlated Arrivals // TheTheory of Queuing Systems with Correlated Flows. Springer,Cham. – doi: 10.1007/978-3-030-32072-0_2.
  10. 10. KEMPA WPJCIECH M., PAPROCKA I. Transient behaviorof a queueing model with hyper-exponentially distributedprocessing times and finite buffer capacity // Sensors. – 2022. –Vol. 22, No. 24. – doi: 10.3390/s22249909.
  11. 11. MURAT SAGIR, VEDAT SAGLAM. Optimization andanalysis of a tandem queueing system with parallel channelat second station // Communications in Statistics P Theory andMethods. – 2022. – Vol. 51, No. 21. – P. 1–14.
  12. 12. PRABHU N.U. Transient Behaviour of a Tandem Queue //Management Science. – 1967. – Vol. 13, No. 9. – P. 631–639. –doi: 10.1287/mnsc.13.9.631.
  13. 13. RUBINO G. Transient analysis of Markovian queueing systems:a survey with focus on closed forms and uniformization //Queueing Theory 2: Advanced Trends; Wiley-ISTE: Hoboken.NJ. – 2021. – P. 269–307.
  14. 14. SERITE OZKAR. Two-commodity queueing-inventorysystem with phase-type distribution of service times //Annals of Operations Research. – 2022. – URL:https://link.springer.com/article/10.1007/s10479-022-04865-3(дата обращения: 06.04.2025).
  15. 15. SITA RAMA MURTHY M., SRINIVASA RAO K.,RAVINDRANATH V. et al. Transient Analysis of K-nodeTandem Queuing Model with Load Dependent Service Rates //Int. J. Engin. Techno. – 2018. – Vol. 7, No. 3.31. – P. 141–149.
  16. 16. SUDHESH R., VAITHIYANATHAN A. Stationary analysis ofinfinite queueing system with two P stage network server //RAIRO-Oper. Res. – 2021. – Vol. 55. – P. 2349–2357.
  17. 17. SUHASINI A.V.S., SRINIVASA RAO K., REDDY P.R.S.Transient analysis of tandem queueing model withnonhomogenous poisson bulk arrivals having statedependentservice rates // Int. J. Advanc. Comput. Math. Sci. – 2012. –Vol. 3, No. 3. – P. 272–289.
  18. 18. VISHNEVSKY V.M., VYTOVTOV K.A.,BARABANOVA E.A. et al. Analysis of an M AP/M/1/Nqueue with periodic and non-periodic piecewise constantinput rate // Mathematics. – 2022. – Vol. 10, No. 10. –URL: https://www.mdpi.com/2227-7390/10/10/1684 (датаобращения: 06.04.2025).
  19. 19. VISHNEVSKY V.M., VYTOVTOV. K.A.,BARABANOVA E.A. et al. Transient behavior of the MAP/M/1/N queuing system // Mathematics. – 2021. – Vol. 9,No. 2559. – doi: 10.3390/math9202559.
  20. 20. VYTOVTOV K.A., BARABANOVA E.A.,VISHNEVSKY V.M. Modeling and Analysis of Multi-channelQueuing System Transient Behavior for Piecewise-ConstantRates // LNCS. Springer. – 2023. – Vol. 13766. – P. 397–409.
  21. 21. ZEIFMAN A.I., KOROLEV V., SATIN Y.A. Review TwoApproaches to the Construction of Perturbation Bounds forContinuous-Time Markov Chains // Mathematics. – 2020. –Vol. 8. – doi: 10.3390/math8020253.
  22. 22. ZEIFMAN A.I., RAZUMCHIK R.V., SATIN Y.A. et al.Ergodicity bounds for the markovian queue with time-varyingtransition intensities, batch arrivals and one queue skippingpolicy // Appl. Math. Comput. – 2021. – Vol. 395. –Article 125846.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).