Forecasting the dynamics of public opinion based on longitudinal data of high granularity: the abelson model, regression models, and ensembles of models
- Authors: Buzikov M.E.1, Petelina I.A.2, Krassotkin S.A.1, Ryzhov M.S.1, Kozitsin I.V.3
-
Affiliations:
- V.A. Trapeznikov Institute of Control Sciences of RAS
- Ozon Tech
- V.A. Trapeznikov Institute of Control Sciences of RAS, Moscow, Moscow Institute of Physics and Technology
- Issue: No 115 (2025)
- Pages: 220-240
- Section: Control of social-economic systems
- URL: https://ogarev-online.ru/1819-2440/article/view/306198
- ID: 306198
Cite item
Full Text
Abstract
About the authors
Maksim Emonayevich Buzikov
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: me.buzikov@physics.msu.ru
Moscow
Iuliia Aleksandrovna Petelina
Ozon Tech
Email: ptlna@yandex.ru
Moscow
Semen Aleksandrovich Krassotkin
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: semen.krassotkin@gmail.com
Moscow
Maksin Sergeevich Ryzhov
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: ryzhov@phystech.edu
Moscow
Ivan Vladimirovich Kozitsin
V.A. Trapeznikov Institute of Control Sciences of RAS, Moscow, Moscow Institute of Physics and Technology
Email: kozisin.ivan@mail.ru
Moscow
References
- ABELSON R.P. Mathematical models of the distribution ofattitudes under controversy // Contributions to MathematicalPsychology. – 1964.
- BONACICH P. Some unique properties of eigenvectorcentrality // Social Networks. – 2007. – Vol. 29, No. 4. – P. 555–564. – DOI: https://doi.org/10.1016/j.socnet.2007.04.002.
- BOND R.M. et al. A 61-million-person experiment insocial influence and political mobilization // Nature. –2012. – Vol. 489, No. 7415. – P. 295–298. – DOI: https://doi.org/10.1038/nature11421.
- CHEBOTAREV P., GUBANOV D.A. How to Choose the MostAppropriate Centrality Measure? A Decision-Tree Approach //IEEE Trans. on Systems, Man, and Cybernetics: Systems. –2024. – DOI: https://doi.org/10.1109/TSMC.2024.3510633.
- CINUS F. et al. The effect of people recommenders on echochambers and polarization // Proc. of the Int. AAAI Conf. onWeb and Social Media. – 2022. – Vol. 16. – P. 90–101. – DOI:https://doi.org/10.1609/icwsm.v16i1.19275.
- DEFFUANT G. et al. Mixing beliefs among interacting agents //Advances in Complex Systems. – 2000. – Vol. 3, No. 01n04. –P. 87–98. – DOI: https://doi.org/10.1142/S0219525900000078.
- DEGROOT M.H. Reaching a consensus // Journal ofthe American Statistical association. – 1974. – Vol.69, No. 345. – P. 118–121. – DOI: https://doi.org/10.1080/01621459.1974.10480137.
- FLACHE A. et al. Models of social influence: Towards the nextfrontiers // JASSS – The Journal of Artificial Societies andSocial Simulation. – 2017. – Vol. 20, No. 4. – P. 2. – DOI:https://doi.org/10.18564/jasss.3521.
- FRENCH JR J.R.P. A formal theory of social power //Psychological Review. – 1956. – Vol. 63, No. 3. – P. 181.
- FREY V. et al. Who influences lower-status individualsmore: People of higher-status outgroups or people of theirlower-status ingroup? Examining the difference betweenmatters of opinion and matters of fact // Social ScienceResearch. – 2024. – Vol. 123. – P. 103060. – DOI: https://doi.org/10.1016/j.ssresearch.2024.103060.
- FRIEDKIN N.E., JIA P., BULLO F. A theory of the evolutionof social power: Natural trajectories of interpersonal influencesystems along issue sequences // Sociological Science. – 2016. –Vol. 3. – P. 444–472. – DOI: https://doi.org/10.15195/v3.a20.
- GEZHA V.N., KOZITSIN I.V. The effects of individuals’opinion and non-opinion characteristics on theOrganization of Influence Networks in the online domain //Computers. – 2023. – Vol. 12, No. 6. – P. 116. – DOI:https://doi.org/10.3390/computers12060116.
- JEDRZEJEWSKI A., SZNAJD-WERON K. Impact of memoryon opinion dynamics // Physica A: Statistical Mechanics andits Applications. – 2018. – Vol. 505. – P. 306–315. – DOI:https://doi.org/10.1016/j.physa.2018.03.077.
- JI C., JIANG D. Threshold behaviour of a stochasticSIR model // Applied Mathematical Modelling. – 2014. –Vol. 38, No. 21–22. – P. 5067–5079. – DOI: https://doi.org/10.1016/j.apm.2014.03.037.
- KOZITSIN I.V. et al.Modeling political preferencesof russian users exemplified by the social networkVkontakte // Mathematical Models and ComputerSimulations. – 2020. – Vol. 12. – P. 185–194. – DOI: https://doi.org/10.1134/S2070048220020088.
- KOZITSIN I.V. A general framework to link theory andempirics in opinion formation models // Scientific reports. –2022. – Vol. 12, No. 1. – P. 5543. – DOI: https://doi.org/10.1038/s41598-022-09468-3.
- KOZITSIN I.V. Opinion dynamics of online social networkusers: a micro-level analysis // The Journal of MathematicalSociology. – 2023. – Vol. 47, No. 1. – P. 1–41. – DOI:https://doi.org/10.1080/0022250X.2021.1956917.
- KULKARNI B. et al. SLANT+: A nonlinear model foropinion dynamics in social networks // IEEE Int. Conf. onData Mining (ICDM). – IEEE, 2017. – P. 931–936. – DOI:https://doi.org/10.1109/ICDM.2017.117.
- NEWMAN M. Networks. – Oxford University Press, 2018.
- OKAWA M., IWATA T. Predicting opinion dynamicsvia sociologically-informed neural networks // Proc. ofthe 28th ACM SIGKDD Conf. on Knowledge Discoveryand Data Mining. – 2022. – P. 1306–1316. – DOI:https://doi.org/10.1145/3534678.35392.
- PANSANELLA V. et al. Change my mind: Data drivenestimate of open-mindedness from political discussions //Int. Conf. on Complex Networks and Their Applications. –Cham: Springer Int. Publishing, 2022. – P. 86–97. – DOI:https://doi.org/10.1007/978-3-031-21127-0_8.
- PESHKOVSKAYA A., BABKINA T., MYAGKOV M. Socialcontext reveals gender differences in cooperative behavior //Journal of Bioeconomics. – 2018. – Vol. 20. – P. 213–225. –DOI: https://doi.org/10.1007/s10818-018-9271-5.
- PESHKOVSKAYA A., BABKINA T., MYAGKOV M. Gendereffects and cooperation in collective action: A laboratoryexperiment // Rationality and Society. – 2019. – Vol. 31, No. 3. –P. 337–353. – DOI: https://doi.org/10.1177/1043463119858788.
- PROSKURNIKOV A.V., TEMPO R. A tutorial on modelingand analysis of dynamic social networks. Part I // AnnualReviews in Control. – 2017. – Vol. 43. – P. 65–79. – DOI:https://doi.org/10.1016/j.arcontrol.2017.03.002.
- PROSKURNIKOV A.V., TEMPO R. A tutorial on modelingand analysis of dynamic social networks. Part II // AnnualReviews in Control. – 2018. – Vol. 45. – P. 166–190. – DOI:https://doi.org/10.1016/j.arcontrol.2018.03.005.
- RAVAZZI C. et al. Learning hidden influences in large-scale dynamical social networks: A data-driven sparsity-basedapproach, in memory of Roberto Tempo // IEEE ControlSystems Magazine. – 2021. – Vol. 41, No. 5. – P. 61–103. –DOI: https://doi.org/10.1109/MCS.2021.3092810.
- ZHU L., HE Y., ZHOU D. Neural opinion dynamics modelfor the prediction of user-level stance dynamics // InformationProcessing & Management. – 2020. – Vol. 57, No. 2. –P. 102031. – DOI: https://doi.org/10.1016/j.ipm.2019.03.010.
- КОЗИЦИН И.В. Построение прогноза динамики обще-ственного мнения при помощи SCARDO-модели // Управ-ление большими системами. – 2024. – Вып. 108. – С. 124–136. – DOI: https://doi.org/10.25728/ubs.2024.108.7.
Supplementary files
