Scene recognition for the mobile robot global localization problem based on image vectorization and graphs approaches
- Authors: Moscowsky A.D.1
-
Affiliations:
- National Research Ceneter «Kurchatov Institute»
- Issue: No 114 (2025)
- Pages: 307-344
- Section: Vehicle control and navigation
- URL: https://ogarev-online.ru/1819-2440/article/view/291945
- ID: 291945
Cite item
Full Text
Abstract
About the authors
Anton Dmitrievich Moscowsky
National Research Ceneter «Kurchatov Institute»
Email: moscowskyad@yandex.ru
Moscow
References
- ВЕНТЦЕЛЬ Е.С. Теория вероятностей. – М.: Высшая школа, 1999. – 576 c.
- МОСКОВСКИЙ А.Д. Распознавание сцен для задачи глобальной локализации робота // Труды 34-й Междуна-родной научно-технической конференции «Экстремаль-ная робототехника». – 2023. – C. 267–274.
- МОСКОВСКИЙ А.Д. Распознавание сцен для задач ло-кализации мобильного робота в условиях неопределён-ности // Сборник научных трудов XII Международной научно-практической конференции «Интегрированные модели и мягкие вычисления в искусственном интеллек-те» (ИММВ-2024), Коломна, 14-17 мая 2024 г. В 2-х то-мах. – 2024. – Т. 2. – C. 255–266.
- ANKENBAUER J., LUSK P.C., THOMAS A. et al. Global Localization in Unstructured Environments using Semantic Object Maps Built from Various Viewpoints // IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). – IEEE, 2023. – P. 1358–1365.
- CARLETTI V., FOGGIA P., GRECO A. et al. VF3-Light: A lightweight subgraph isomorphism algorithm and its ex-perimental evaluation // Pattern Recognition Letters. – 2019. – Vol. 125. – P. 591–596.
- CORDELLA L.P., FOGGIA P., SANSONE C. et al. Perfor-mance evaluation of the VF graph matching algorithm // Proc. of the 10th Int. Conf. on Image Analysis and Pro-cessing. – 1999. – P. 1172–1177.
- GARG S., FISCHER T., MILFORD M. Where Is Your Place, Visual Place Recognition? // Proc. of the 13th Int. Joint Conf. on Artificial Intelligence. – 2021. – P. 4416–4425.
- GAWEL A., DON C. DEL, SIEGWART R. et al. X-View: Graph-Based Semantic Multi-View Localization // IEEE Ro-bot. Autom. Lett. – 2018. – Vol. 3, No. 3. – P. 1687–1694.
- GEIGER A., LENZ P., URTASUN R. Are we ready for au-tonomous driving? The KITTI vision benchmark suite // IEEE Conf. on Computer Vision and Pattern Recognition. – 2012. – P. 3354–3361.
- HEWITT R.A., BOUKAS E., AZKARATE M. et al. The Katwijk beach planetary rover dataset // The Int. Journal of Robotics Research. – 2018. – No. 1(37). – P. 3–12.
- JÜTTNER A., MADARASI P. VF2++—An improved sub-graph isomorphism algorithm // Discrete Applied Mathemat-ics. – 2018. – Vol. 242. – P. 69–81.
- KERL C., STURM J., CREMERS D. Dense visual SLAM for RGB-D cameras // IEEE Int. Conf. on Intelligent Robots and Systems. – 2013. – P. 2100–2106.
- KONG X., YANG X., ZHAI G. et al. Semantic Graph Based Place Recognition for 3D Point Clouds // IEEE/RSJ Int. Conf. on Intelligent Ro-bots and Systems (IROS). – 2020. – P. 8216–8223.
- LIAO Y., XIE J., GEIGER A. KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D // IEEE Trans. Pattern Anal. Mach. Intell. – 2023. – Vol. 45, No. 3. – P. 3292–3310.
- LIU Y., PETILLOT Y., LANE D. et al. Global Localization with Object-Level Semantics and Topology // Int. Conf. on Robotics and Automation (ICRA). – 2019. – P. 4909–4915.
- LUSK P.C., FATHIAN K., HOW J.P. CLIPPER: A Graph-Theoretic Framework for Robust Data Association // IEEE Int. Conf. on Robotics and Automation (ICRA). – 2021. – P. 13828–13834 .
- MATSUZAKI S., SUGINO T., TANAKA K. et al. CLIP-Loc: Multi-modal Landmark Association for Global Localization in Object-based Maps // IEEE Int. Conf. on Robotics and Au-tomation (ICRA). – 2024. – P. 13673–13679.
- MIRJALILI R., KRAWEZ M., BURGARD W. FM-Loc: Us-ing Foundation Models for Improved Vision-based Localiza-tion // IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). – 2023. – P. 1381–1387.
- MOSCOWSKY A. Subdefinite Computations for Reducing the Search Space in Mobile Robot Localization Task // Lec-ture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-formatics). – 2021. – (12948 LNAI) – P. 180–196.
- QIN C., ZHANG Y., LIU Y. et al. Semantic loop closure de-tection based on graph matching in multi-objects scenes // Journal of Visual Communication and Image Representation. – 2021. – Vol. 76. – P. 103072.
- RADFORD A., KIM J.W., HALLACY C. et al. Learning Transferable Visual Models From Natural Language Super-vision // Int. Conf. on Machine Learning. – 2021. – P. 8748–8763.
- ROVBO M.A., SOROKOUMOV P.S. Symbolic Control Sys-tem for a Mobile Robotic Platform Based on Soar Cognitive Architecture // Smart Electromechanical Systems. – 2022. – P. 259–275.
- SAHILI A.R., HASSAN S., SAKHRIEH S.M. et al. A Survey of Visual SLAM Methods // IEEE Access. – 2023. – Vol. 11. – P. 139643–139677.
- SHAHEER M., MILLAN-ROMERA J.A., BAVLE H. et al. Graph-based Global Robot Localization Informing Situa-tional Graphs with Architectural Graphs // IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). – 2023. – P. 9155–9162.
- UEKI K. Survey of Visual-Semantic Embedding Methods for Zero-Shot Image Retrieval // 20th IEEE Int. Conf. on Ma-chine Learning and Applications (ICMLA). – 2021. – P. 628–634.
- YIN H., XU X., LU S. et al. A Survey on Global LiDAR Lo-calization: Challenges, Advances and Open Problems // Int. Journal of Computer Vision. – 2024. – No. 8(132). – P. 3139–3171.
- ZEMSKOVA T., STAROVEROV A., MURAVYEV K. et al. Interactive Semantic Map Representation for Skill-Based Visual Object Navigation // IEEE Access. – 2024. – Vol. 12. – P. 44628–44639.
- ZHANG X.Y., ABD RAHMAN A.H., QAMAR F. Semantic visual simultaneous localization and mapping (SLAM) using deep learning for dynamic scenes // PeerJ Computer Science. – 2023. – Vol. 9. – P. e1628.
- ZHANG Y., SHI P., LI J. 3D LiDAR SLAM: A survey // The Photogrammetric Record. – 2024. – No. 186(39). – P. 457–517.
- ZHU Y., MA Y., CHEN L. et al. GOSMatch: Graph-of-Semantics Matching for Detecting Loop Closures in 3D Li-DAR data // IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). – 2020. – P. 5151–5157.
- ZIMMER W., ERCELIK E., ZHOU X. et al. A Survey of Ro-bust 3D Object Detection Methods in Point Clouds // arXiv preprint. – arXiv:2204.00106.
- https://huggingface.co/openai/clip-vit-base-patch32.
- https://github.com/MoscowskyAnton/scene_recognition_kitti_360.
- https://python.igraph.org/en/stable/.
- https://optuna.org/.
Supplementary files
