Features of constructing a smoothed trajectory in the presence of a large number of trajectory points
- Авторлар: Makarov M.I.1, Morozov Y.V.1
-
Мекемелер:
- V.A. Trapeznikov Institute of Control Sciences of RAS
- Шығарылым: № 114 (2025)
- Беттер: 291-306
- Бөлім: Vehicle control and navigation
- URL: https://ogarev-online.ru/1819-2440/article/view/291944
- ID: 291944
Дәйексөз келтіру
Аннотация
The article presents a method for smoothing the trajectory obtained using high-frequency data on the movement of motor vehicles over rough terrain in order to improve the accuracy and smoothness of trajectories in the presence of noise. The main attention is paid to the features of the application of quintic B-splines, which provide a high degree of smoothness in describing the trajectory and preliminary data filtering. The article consistently describes the technical and mathematical difficulties that arise when implementing the algorithm on real data, and suggests methods for overcoming them. One of such methods is filtering outliers to eliminate sharp deviations from the original trajectory using a digital Butterworth filter. Various approaches for working with a large number of trajectory points are considered and tested, including splitting the data into separate overlapping windows with their sequential stitching, which significantly improves the performance of the algorithm. To optimize the calculations, it is also proposed to use sparse matrices that effectively work with large amounts of data and occupy significantly less computer memory compared to traditional ones. The effectiveness of the proposed approach is confirmed by examples where smoothed trajectories obtained from noisy data are visualized.
Негізгі сөздер
Авторлар туралы
Maxim Makarov
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: maxim.i.makarov@gmail.com
Moscow
Yuriy Morozov
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: tot1983@ipu.ru
Moscow
Әдебиет тізімі
- ГИЛИМЬЯНОВ Р.Ф., ПЕСТЕРЕВ А.В., РАПОПОРТ Л.Б.Сглаживание кривизны траекторий, построенных по за-шумленным измерениям в задачах планирования пути дляколесных роботов // Известия РАН. Теория и системыуправления. – 2008. –№5. – С. 148–156.
- ГИЛИМЬЯНОВ Р.Ф., РАПОПОРТ Л.Б. Метод деформациипути в задачах планирования движения роботов при нали-чии препятствий // Проблемы управления. – 2012. – №1. –С. 70–76.
- МАКАРОВ М.И. Алгоритм локального планирования путидля объезда препятствий в путевых координатах // Про-блемы управления. – 2024. – №3. – С. 66–72.
- МОРОЗОВ Ю.В., КОРГИН Н.А. Особенности использова-ния ГНСС rtk и imu на электрическом снегоходе одноко-лейной компоновки при движении по не жесткой поверх-ности // Сборник материалов XVIII Всероссийской научно-практической конференции «Перспективные системы и за-дачи управления». – Таганрог: 2023. – С. 112–118.
- РОМАНЮК Ю.А. Основы цифровой обработки сигналов.Учебное пособие. Часть 1. – М., 2007г.
- FU-CHUNG W., SCHOFIELD S., WRIGHT P. A Real TimeQuintic Spline Interpolator for an Open Architecture MachineTool // ASME Int. Mechanical Engineering Congress andExposition. – 1996. – P. 291–298.
- GILIMYANOV R.F., RAPOPORT L.B. Path DeformationMethod for Robot Motion Planning Problems in the Presenceof Obstacles // Autom. Remote Control. – 2013. – Vol. 74,No. 12. – P. 70–76.
- LEICK A., RAPOPORT L., TATARNIKOV D. GPS SatelliteSurveying. – New York: John Wiley & Sons, 2015.
- JIN J., TANG L. Coverage path planning on three-dimensionalterrain for arable farming // J. F. Robot. – 2011. – Vol. 28,No. 3. – P. 424–440.
- MOROZOV Y. B-slines Trajectory Planning for QuadrotorFlight // V Int. Conf. on Optimization Methods andApplications OPTIMIZATION AND APPLICATIONS(OPTIMA-2014), Petrova, Montenegro, 2014. – P. 138–139.
- MOHAMED R., AHMED O., AMIRA Y.H. et al. Path planningalgorithms in the autonomous driving system: A comprehensivereview // Robotics and Autonomous Systems. – 2024. –Vol. 174. – P. 104630.
- PADOKHIN A.M., MYLNIKOVA A.A.,YASYUKEVICH YU.V. et al. Galileo E5 AltBOC Signals:Application for Single-Frequency Total Electron ContentEstimations // Remote Sensing. – 2021. – Vol. 13, Iss. 19. –P. 3973 (1–14).
- RAPOPORT L., MOGILNITSKY V., ASHJAEE J. Octopus:Four-antennae RTK System and New Attitude DeterminationTechnique // Proc. 14th Int. Technical Meeting of the SatelliteDivision of The Institute of Navigation (ION GPS 2001), SaltLake City, UT, September 2001. – P. 2972–2979.
- TORMAGOV T.A. Path Deformation Method with Constraintson Normal Curvature for Wheeled Robots in PrecisionAgriculture Based on Second-Order Cone Programming //Autom. Remote Control. – 2024. – Vol. 85. – P. 123–131.
- TORMAGOV T., RAPOPORT L. Coverage Path Planningfor 3D Terrain with Constraints on Trajectory CurvatureBased on Second-Order Cone Programming // In: Advancesin Optimization and Applications / Eds.: N.N. Olenev et al. –Cham: Springer International Publishing, 2021. – P. 258–272.
- TORMAGOV T.A., GENERALOV A.A., SHAVIN M.Y. et al.Motion Control of Autonomous Wheeled Robots in PrecisionAgriculture // Gyroscopy Navig. – 2022. – Vol. 13, No. 1. –P. 23–35.
- TORMAGOV T., RAPOPORT L. Coverage Path Planningfor 3D Terrain with Constraints on Trajectory CurvatureBased on Second-Order Cone Programming // In: Advancesin Optimization and Applications / Eds.: N.N. Olenev et al. –Cham: Springer International Publishing, 2021. – P. 258–272.
- HAMEED I.A., LA COUR-HARBO A., OSEN O.L. Side-to-side 3D coverage path planning approach for agriculturalrobots to minimize skip/overlap areas between swaths // Rob.Auton. Syst. Elsevier. – 2016. – Vol. 76. – P. 36–45.
- XIWEN G., ZHOU F., QUNJING W. et al. Smooth Planning forManipulator with Multi-dimensional Actuator based on QuinticB-spline // Electrotehnica, Electronica, Automatica. – 2022. –Vol. 70. – P. 20–29.
- YAN D., WU T., LIU Y. et al. An efficient sparse-dense matrixmultiplication on a multicore system // IEEE 17th Int. Conf. onCommunication Technology (ICCT), Chengdu, China, 2017. –P. 1880–1883.
Қосымша файлдар


