Modelling induced polarization effect in frequency domain aem data
- Authors: Khliustov D.K.1
-
Affiliations:
- V.A. Trapeznikov Institute of Control Sciences of RAS
- Issue: No 114 (2025)
- Pages: 108-121
- Section: Information technologies in control
- URL: https://ogarev-online.ru/1819-2440/article/view/291936
- ID: 291936
Cite item
Full Text
Abstract
About the authors
Dmitrii Kirillovich Khliustov
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: hlustov.d@gmail.com
Moscow
References
- BAI P., VIGNOLI G., HANSEN T. 1D stochastic inversion of airborne time-domain electromagnetic data with realistic prior and accounting for the forward modeling error // Re-mote Sensing. – 2021. – Vol. 13, No. 19. – P. 38–81.
- COLE K.S., COLE R.H. Dispersion and absorption in die-lectric I // The Journal of Chemical Physics. – 1941. – Vol. 4, No. 9. – P. 341–351.
- DIAS C. Developments in a model to describe low-frequency electrical polarization of rocks // Geophysics. – 2000. – Vol. 2, No. 65. – P. 437–451.
- GURIN G., TITOV K., ILYIN Y. Induced polarization of rocks containing metallic particles: evidence of passivation effect // Geophysical Reseach Letters. – 2019. – Vol. 2, No. 46. – P. 670–677.
- HEAGY L., OLDENBURG D. Electrical and electromagnet-ic methods for well integrity // AGU Fall Meeting Abstracts. - 2021. – Vol. 1, No. 1. – P. 12–15.
- KAMINSKI V., VIEZZOLI A. Modeling induced polariza-tion effects in helicopter time-domain electromagnetic data: Field case studies // Geophysics. – 2017. – Vol. 2, No. 82. – P. 49–61.
- KARSHAKOV E., MOILANEN J. Overcoming Airborne IP in Frequency Domain: Hopes and Disappointments // Proc. of SAGA Biennial Conf. & Exhibition. – 2019. – Vol. 1, No. 1. – P. 1–4.
- KARSHAKOV E. Iterated extended Kalman filter for air-borne electromagnetic data inversion // Exploration Geo-physics - 2020. – Vol. 1, No. 51. – P. 66–73.
- KARSHAKOV E. Airborne electromagnetics: dealing with the aircraft speed // Proc. of the 8th Int. Airborne Electro-magnetics Workshop. – 2023. – Vol. 1, No. 1. – P. 1–4.
- KLOSE T., GUILLEMOTEAU J., VIGNOLI G. et al. Later-ally constrained inversion (LCI) of multi-configuration EMI data with tunable sharpness. // Journal of Apllied Geophys-ics. – 2022. – No. 196. – P. 104–519.
- MACNAE J., HINE K. Comparing induced polarisation re-sponses from airborne inductive and galvanic ground sys-tems: Tasmania // Geophysics. – 2016. – Vol. 81, No. 6. – P. E471–E479.
- MACNAE J. Geological interpretation of near-surface in-duced polarization and superparametric effects in airborne electromagnetic data // Symposium on the Application of Geophysics to Engineering and Environmental Problems. – 2021. – Vol. 1, No. 1. – P. 118–128.
- MADSEN L., FIANDACA G., AUKEN E. 3D-time-domain spectral inversion of resistivity and full-decay induced polar-ization data – full solution of Poisson’s equation and model-ling of the current waveform // Geophysics. – 2020. – Vol. 223, No. 3. – P. 2101–2116.
- MOILANEN J., KARSHAKOV E., VOLKOVITSKY A. Time-domain helicopter EM System “Equator”: resolution, sensitivity, universality // Proc. of SAGA Biennial Conf. & Exhibition. – 2013. – Vol. 1, No. 1. – P. 1–4.
- MOILANEN J. Modern methods of airborne electromagnet-ic survey // Izvestiya, Physics of the Solid Earth. – 2022. – Vol. 58, No. 5. – P. 755–764.
- OLDENBURG D., KANG S., HEAGY L. et al. Direct cur-rent resistivity methods // Engineering Geophysics. – 2022. – Vol. 55, No. 4. – P. 67–75.
- PELTON W., WARD S., HALLOF G. et al. Mineral discrim-ination and removal of inductive coupling with multifre-quency IP // Geophysics. – 1978. – Vol. 3, No. 43. – P. 588–609.
- WEIS J., HEAGDY L., OLDENBURG D. Comparison of magnetic vector inversion with sparse norm susceptibility in-version accounting for demagnetization // SEG. – 2023. – Vol. 1, No. 1. – P. 37–65.
- XUE G. et al. Geophysics for critical minerals – Introduction // Geophysics. – 2024. – Vol. 89, No. 1. – P. 98–116.
- ZHDANOV M. Geophysical electromagnetic theory and methods. – Elsevier, 2009.
Supplementary files
