Impact of internal configuration on overall risk in complex systems, examined through the risk reduction problem in a system of star-shaped structure

Capa

Citar

Texto integral

Resumo

This paper explores how the internal structure of a complex system affects its overall risk. Addressing risk management challenges often requires considering structural effects such as risk transfer and failure propagation. The study examines how the positioning of elements within a predefined star-shaped structure affects the overall risk of the system. The author shows that analytically solving the issue of optimal element placement to minimize risk in this configuration is not feasible and introduces an algorithm with bounded errors to tackle this problem. When considering equal expected damages from a potential attack on any element, the author provides upper bounds for the relative error of the proposed algorithm and suggests a method for quick risk assessment in systems with a ``star'' configuration. Additionally, he has derived an exact solution for the optimal placement problem when the risks of the elements share a specific ratio. The obtained results will be used in further research for the resolution of an ambiguous problem in more intricate structures, particularly tree-like structures, with subsequent generalization to complex networks of arbitrary topology.

Sobre autores

Alexander Shiroky

V.A. Trapeznikov Institute of Control Sciences of RAS

Email: shiroky@ipu.ru
Moscow

Bibliografia

  1. КАЛАШНИКОВ А.О., АНИКИНА Е.В. Управление инфор-мационными рисками сложной системы с использованиеммеханизма «когнитивной игры» // Вопросы кибербезопас-ности. – 2020. – № 4(38). – С. 2–10.
  2. КАЛАШНИКОВ А.О., АНИКИНА Е.В. Управление риска-ми сложной сети на основе обобщенной арбитражной схе-мы // Вопросы кибербезопасности. – 2022. – № 1(47). –С. 95–101.
  3. ШИРОКИЙ А.А. Учет влияния структуры сложной систе-мы при управлении рисками // Управление большими систе-мами: сборник трудов. – 2024. – Вып. 107. – С. 88—106.
  4. BLOCH F., JACKSON M.O., TEBALDI P. Centrality measuresin networks // Soc Choice Welf. – 2023. – Vol. 61. – P. 413–453. – DOI: https://doi.org/10.1007/s00355-023-01456-4
  5. BODKHE U., MEHTA D., TANWAR S. et al. A surveyon decentralized consensus mechanisms for cyber physicalsystems // IEEE Access. – 2020. – No. 8. – P. 54371–54401.
  6. CAJUEIRO D.O., ANDRADE R.F. Controlling self-organizedcriticality in complex networks // Eur. Phys. J. B. – 2010. –Vol. 77, No. 2. – P. 291–296.
  7. CHEN B., CAO L. An optimized algorithm for calculating theaverage path length of complex network // Proc. of the 10th Int.Symposium on Computational Intelligence and Design (ISCID)Hangzhou, China, 9–10 December 2017. – Vol. 1. – P. 334–337.
  8. CHEN C., IYENGAR G., MOALLEMI C.C. An axiomaticapproach to systemic risk // Manag. Sci. – 2013 – Vol. 59,No. 6. – P. 1373–1388.
  9. CRIADO R., ROMANCE M. Structural vulnerability androbustness in complex networks: different approaches andrelationships between them // Handbook of optimization incomplex networks.–NewYork,NY: Springer,2012.–P. 3–36.
  10. DEGEFU D.M., HE W., YUAN L. Monotonic bargainingsolution for allocating critically scarce transboundary water //Water Resour. Manag. – 2017. – Vol. 31, No. 9. – P. 2627–2644.
  11. DING D., TANG Z., WANG Y. et al. Secure synchronization ofcomplex networks under deception attacks against vulnerablenodes // Appl. Math. Comput. – 2021. – Vol. 399. – e126017.
  12. FREITAS S., YANG D., KUMAR S. et al. Graph Vulnerabilityand Robustness: A Survey // IEEE Trans. Knowl. Data Eng. –2022. – Vol. 35, No. 6. – P. 5915–5934.
  13. HOFFMANN H., PAYTON D.W. Optimization by self-organized criticality // Sci. Rep. – 2018. – Vol. 8, No. 1. –P. 1–9.
  14. JALILI M., PERC M. Information cascades in complexnetworks // J. Complex Netw. – 2017. – Vol. 5, No. 5. –P. 665–693.
  15. KALAI E., SMORODINSKY M. Other solutions to Nash’sbargaining problem // Econometrica. – 1975. – Vol. 43, No. 3. –P. 513–518.
  16. KANYOU C., KOUOKAM E., EMVUDU Y. Structuralnetwork analysis: Correlation between centrality measures //Proc. of the African Conf. on Research in Computer Science(CARI) Yaounde, Dschang, Cameroon, 22 September –3 October 2022. – hal-03714191.
  17. KOCAREV L. (Ed.) Consensus and synchronization in complexnetworks. – Berlin/Heidelberg, Germany: Springer, 2013.
  18. NASH Z. The bargaining problem // Econometrica. – 1950. –Vol. 18, No. 2. – P. 155–162.
  19. NASH Z. Two-person cooperative games // Econometrica. –1953. – Vol. 21, No. 1. – P. 128–140.
  20. NOWZARI C., PRECIADO V.M., PAPPAS G.J. Analysis andcontrol of epidemics: A survey of spreading processes oncomplex networks // IEEE Control Syst. Mag. – 2016. – Vol. 36,No. 1. – P. 26–46.
  21. PU H., LI Y., MA C. Topology analysis of Lanzhou publictransport network based on double-layer complex networktheory // Physica A. – 2022. – Vol. 592. – e126694.
  22. SAXENA A., IYENGAR S. Centrality measures incomplex networks: A survey // arXiv preprint. – 2020. –arXiv:2011.07190.
  23. LIU X., ZHANG M., FIUMARA G. et al. Complex NetworkHierarchical Sampling Method Combining Node NeighborhoodClustering Coefficient with Random Walk // New Gener.Comput. – 2022. – Vol. 40, No. 3. – P. 765–807.
  24. RADULESCU A., EVANS D., AUGUSTIN A.-D. et al.Synchronization and Clustering in Complex QuadraticNetworks // Neural Comput. – 2024. – Vol. 36, No. 1. –P. 75–106.
  25. SHIROKY A., KALASHNIKOV A. Mathematical Problems ofManaging the Risks of Complex Systems under Targeted Attackswith Known Structures // Mathematics. – 2021. – No. 9(19). –e2468.
  26. SIMAS T., CORREIA R.B., ROCHA L.M. The distancebackbone of complex networks // J Complex Netw. – 2021. –Vol. 9, No. 6. – cnab021.
  27. SUAREZ O.J., VEGA C.J., ELVIRA-CEJA S. et al. Sliding-mode pinning control of complex networks // Kybernetika. –2018. – Vol. 54, No. 5. – P. 1011–1032.
  28. XING W., SHI P., AGARWAL R.K. et al. A survey on globalpinning synchronization of complex networks // J. FranklinInst. – 2019. –Vol. 356, No. 6. – P. 3590–3611.
  29. WANG C., XIA Y. Robustness of complex networks consideringattack cost // IEEE Access. – 2020. – No. 8. – P. 172398–172404.
  30. WANG H., WANG J., LIU Q. et al. Identifying key spreadersin complex networks based on local clustering coefficient andstructural hole information // New J. Phys. – 2023. – Vol. 25,No. 12. – e123005.
  31. WANG S., LIU J. Designing comprehensively robust networksagainst intentional attacks and cascading failures // Inf. Sci. –2019. – No. 478. – P. 125–140.
  32. WANG Y., FAN H., LIN W. et al. Growth, collapse and self-organized criticality in complex networks // Sci. Rep. – 2016. –Vol. 6, No. 1. – P. 1–12.
  33. ZHANG Q., TSENG L.. Fault-tolerant Consensus inAnonymous Dynamic Network // arXiv preprint. – 2024. –arXiv:2405.03017.
  34. ZHAO J., WANG Y., DENG Y. Identifying influential nodesin complex networks from global perspective // Chaos SolitonsFractals. – 2020. – Vol. 133. – e109637.
  35. ZHAO L.H., WEN S., LI C. et al. A Recent Survey on Controlfor Synchronization and Passivity of Complex Networks // IEEETrans. Netw. Sci. Eng. – 2022. – No. 9. – P. 4235–4254.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição–NãoComercial 4.0 Internacional.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».