Lucas – kanade optical flow computation based on the finite dimensional sampling theories
- Authors: Farkhadov M.P.1, Teplukhin R.G.2, Abramenkov A.N.1, Abdulov A.V.1, Lychkov I.I.2
-
Affiliations:
- V.A. Trapeznikov Institute of Control Sciences of RAS
- Bauman Moscow State Technical University
- Issue: No 113 (2025)
- Pages: 151-179
- Section: Articles
- URL: https://ogarev-online.ru/1819-2440/article/view/289711
- ID: 289711
Cite item
Full Text
Abstract
About the authors
Mais Pasha Ogly Farkhadov
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: mais@ipu.ru
Moscow
Rustam Gennad'evich Teplukhin
Bauman Moscow State Technical University
Email: teplukhinrg@student.bmstu.ru
Moscow
Alexander Nikolaevich Abramenkov
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: aabramenkov@asmon.ru
Moscow
Alexander Viktorovich Abdulov
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: aabdulov@asmon.ru
Moscow
Igor Igorevich Lychkov
Bauman Moscow State Technical University
Email: lychkovi@bmstu.ru
Moscow
References
- ЛЫЧКОВ И.И., ТЕПЛУХИН Р.Г. Применение конечно-мерных теорем отсчетов для отслеживания транс-портных средств // Материалы III Международной научно-практической конференции «Интеллектуальные транспортные системы» – М., 2024. – С. 654–666.
- ТЕРЕНТЬЕВ Е.Н., МАХНЮК М.В., БАЛАБАН Е.Д. и др. Градиентная морфология в оценивании параметров объектов в изображениях // Материалы 21-й Междуна-родной конференции «Современные проблемы дистан-ционного зондирования Земли из космоса». – М., 2023. – Т. 13. – С. 56.
- ABOUTABIT N. A new construction of an image edge de-tection mask based on Caputo – Fabrizio fractional deriva-tive // The Visual Computer. – 2021. – Vol. 37, No. 6. – P. 1545–1557.
- AL-QUDAH S., YANG M. Large Displacement Detection Using Improved Lucas – Kanade Optical Flow // Sensors. – 2023. – Vol. 23, No. 6. – P. 3152.
- ARORA S., MATHUR T., AGARWAL S. et al. Applications of fractional calculus in computer vision: a survey // Neuro-computing. – 2022. – Vol. 489. – P. 407–428.
- BOUGUET J.-Y. Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm // Intel Corporation. – 2001. – Vol. 5, No. 1–10. – P. 4.
- BOUMA H., VILANOVA A., BESCOS J.O. et al. Fast and accurate Gaussian derivatives based on B-splines // Int. Conf. on Scale Space and Variational Methods in Computer Vision. – Berlin, Heidelberg: Springer Berlin Heidelberg. – 2007. – P. 406–417.
- BRADSKI G., KAEHLER A. Learning OpenCV: Computer vision with the OpenCV library. – "O'Reilly Media, Inc.", 2008. – 557 p.
- CAPUTO M., FABRIZIO M. A new definition of fractional derivative without singular kernel //P rogress in Fractional Differentiation & Applications. – 2015. – Vol. 1, No. 2. – P. 73–85.
- CHEN D., SHENG H., CHEN Y. et al. Fractional-order var-iational optical flow model for motion estimation // Philo-sophical Trans. of the Royal Society A: Mathematical, Phys-ical and Engineering Sciences. – 2013. – Vol. 371, No. 1990. – P. 20120148.
- EGIDI N., GIACOMINI J., MAPONI P. et al. An FFT meth-od for the numerical differentiation // Applied Mathematics and Computation. – 2023. – Vol. 445. – P. 127856.
- FERRERA M., EUDES A., MORAS J. et al. OV2SLAM: A fully online and versatile visual SLAM for real-time applica-tions // IEEE Robotics and Automation Letters. – 2021. – Vol. 6, No. 2. – P. 1399–1406.
- GONZALEZ-ACUNA R.G., DAVILA A., GUTIERREZ-VEGA J.C. Optical flow of non-integer order in particle im-age velocimetry techniques // Signal Processing. – 2019. – Vol. 155. – P. 317–322.
- KONG L., SHEN C., YANG J. A lightweight network for fast optical flow estimation // IEEE Int. Conf. on Robotics and Automation (ICRA). – IEEE, 2021. – P. 10310–10316.
- KUMAR S.N., FRED A.L., KUMAR A.H. et al. Medical im-age edge detection using Gauss Gradient operator // Journal of Pharmaceutical Sciences and Research. – 2017. – Vol. 9, No. 5. – P. 695.
- LAVIN-DELGADO J.E., SOLIS-PEREZ J.E., GOMEZ-AGUILAR J.F. et al. Robust optical flow estimation involv-ing exponential fractional-order derivatives // Optik. – 2020. – Vol. 202. – P. 163642.
- LIN J., ZHANG F. R3LIVE: A Robust, Real-time, RGB-colored, LiDAR-Inertial-Visual tightly-coupled state Estima-tion and mapping package // Int. Conf. on Robotics and Au-tomation (ICRA). – IEEE, 2022. – P. 10672–10678.
- MENZE M., GEIGER A. Object scene flow for autonomous vehicles // Proc. of the IEEE Conference on Computer Vi-sion and Pattern Recognition. – 2015. – P. 3061–3070.
- NANDAL S., KUMAR S. Fractional-order anisotropic dif-fusion for defogging of RGB images // Int. Journal of Image and Graphics. – 2020. – Vol. 20. – No. 01. – P. 2050001.
- SCHARR H. Optimal filters for extended optical flow // Int. Workshop on Complex Motion – Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. – P. 14–29.
- SHAH S.T.H., XUEZHI X. Traditional and modern strate-gies for optical flow: an investigation // SN Applied Scienc-es. – 2021. – Vol. 3, No. 3. – P. 289.
- SHAKYA S., KUMAR S., GOSWAMI M. Deep learning algorithm for satellite imaging based cyclone detection // IEEE Journal of Selected Topics in Applied Earth Observa-tions and Remote Sensing. – 2020. – Vol. 13. – P. 827–839.
- SHARMIN N., BRAD R. Optimal filter estimation for Lucas-Kanade optical flow // Sensors. – 2012. – Vol. 12, No. 9. – P. 12694–12709.
- SUN D., YANG X., LIU M.-Y. et al. Pwc-net: Cnns for opti-cal flow using pyramid, warping, and cost volume // Proc. of the IEEE Conf. on Computer Vision and Pattern Recogni-tion. – 2018. – P. 8934–8943.
- WINKLER J.R. Error Analysis and Condition Estimation of the Pyramidal Form of the Lucas-Kanade Method in Optical Flow // Electronics. – 2024. – Vol. 13, No. 5. – P. 812.
Supplementary files
