Локальная предельная теорема для возмущенных выборочных траекторий индуцированных порядковых статистик
- Авторы: Биттер И.И.1
-
Учреждения:
- Международная лаборатория стохастического анализа и его приложений, НИУ ВШЭ
- Выпуск: № 113 (2025)
- Страницы: 6-20
- Раздел: Системный анализ
- URL: https://ogarev-online.ru/1819-2440/article/view/289704
- ID: 289704
Цитировать
Полный текст
Аннотация
Об авторах
Илья Игоревич Биттер
Международная лаборатория стохастического анализа и его приложений, НИУ ВШЭ
Email: ilya.bitter@yandex.ru
Москва
Список литературы
- BITTER I., KONAKOV V. L1 and L ∞ stability of transitiondensities of perturbed diffusions // Random Oper. Stoch. Eq. –2021. – Vol. 29(4). – P. 287–308.
- BHATTACHARYA R., RAO R. Normal approximations andasymptotic expansions. – Wiley and sons, 1976.
- BHATTACHARYA P.K. Convergence of Sample Paths ofNormalized Sums of Induced Order Statistics // Ann. Statist. –September, 1974. – Vol. 2(5). – P. 1034–1039.
- CRAMER H., LEADBETTER M.R. Stationary and relatedstochastic processes. – Dover Publications, Inc., Mineola, NY,2004.
- CS ˙ ORG ´ O M., R ´ EV ´ ESZ P. Strong Approximations of thequantile process // The Annals of Statistics. – 1978. – Vol. 6,No. 4. – P. 882–894.
- CS ˙ ORG ´ O M. Quantile Processes with Statistical Applications //Society for IndustrialL and Applied Mathematics. – 1983.
- DAVID H.A. Concomitants of order statistics // Bull. Internat.Statist. Inst. – 1973. – Vol. 45. – P. 295–300.
- DAVID H.A., GALAMBOS J. The asymptotic theory ofconcomitants of order statistics // J. Appl. Probab. – 1974. –Vol. 11. – P. 762–770.
- DAVYDOV YU., EGOROV V. Functional limit theorems forinduced order statistics // Mathematical Methods of Statistics. –January, 2000. – Vol. 9(3). – P. 297–313.
- DELARUE F., MENOZZI S. Density estimates for a randomnoise propagating through a chain of differential equations // J.Funct. Anal. – 2010. – Vol. 259(6). – P. 1577–1630.
- GALAMBOS J. The Asymptotic Theory of Extreme OrderStatistics. – Krieger, Malabar, FL, 1987.
- KONAKOV V., MAMMEN E. Local Limit Theorems andStrong Approximations for Robbins-Monro Procedures //arXiv:2304.10673. – 2023.
- KONAKOV V., MAMMEN E. Local limit theorems fortransition densities of Markov chains converging to diffusions //Probability Theory and Related Fields. – 2000. – Vol. 117. –P. 551–587.
- KONAKOV V., KOZHINA A., MENOZZI S. Stability ofdensities for perturbed diffusions and Markov chains // ESAIM:Probability and Statistics. – 2017. – Vol. 21. – P. 88–112.
- MENOZZI S., PESCE A., ZHANG X. Density and gradientestimates for non-degenerate Brownian SDEs with unboundedmeasurable drift // J. Diff. Eq. –2021. – Vol. 272. – P. 330–369.
- SEN P.K. A note on invariance principles for induced orderstatistics // The Annals of Probab. – 1976. – Vol. 4. –P. 474–479.
- KOZHINA A. Weak error for the Euler scheme approximationof degenerate diffusions with nonsmooth coefficients // Fundam.Prikl. Mat. – 2018. – Vol. 22, Iss. 3. – P. 91–118.
- SKOROHOD A.V. Studies in the theory of randomprocesses. – Addison-Wesley, Reading, Massachussetts, 1965.[English translation of Skorohod A.V. Issledovaniya po teoriisluchaynykh protsessov. – Kiev University Press, 1961.]
- STROOCK D.W., VARADHAN S.R. Multidimensionaldiffusion processes. – Springer, Berlin, Heidelberg, New York,1979.
- VAN DER VAAR A.W. Asymptotic Statistics. – CambridgeUniversity Press, 1998.
- YANG S.S. General distribution theory of the concomitants oforder statistics // The Annals of Statist. – 1977. – Vol. 5. –P. 996–1002.
Дополнительные файлы
