Architecture of a distributed software and hardware complex resource scheduler of infocommunication system of cloud data center
- Authors: Toutov A.V.1, Farhadov M.P.2, Taratukhin A.V.2, Kerimov S.S.2
-
Affiliations:
- Moscow Technical University of Communications and Informatics, Moscow, V.A. Trapeznikov Institute of Control Sciences of RAS
- V.A. Trapeznikov Institute of Control Sciences of RAS
- Issue: No 109 (2024)
- Pages: 268-292
- Section: Control systems hardware and software
- URL: https://ogarev-online.ru/1819-2440/article/view/284373
- DOI: https://doi.org/10.25728/ubs.2024.109.12
- ID: 284373
Cite item
Full Text
Abstract
About the authors
Andrew Vladimirovich Toutov
Moscow Technical University of Communications and Informatics, Moscow, V.A. Trapeznikov Institute of Control Sciences of RAS
Email: andrew_vidnoe@mail.ru
Moscow
Mais Pasha ogly Farhadov
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: mais.farhadov@gmail.com
Moscow
Arsenij Viktorovich Taratukhin
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: avt@ipu.ru
Moscow
Server Seyranovich Kerimov
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: serverdevel@ya.ru
Moscow
References
- ВОРОЖЦОВ А.С., ТУТОВА Н.В., ТУТОВ А.В. Динами-ческое распределение вычислительных ресурсов центров обработки данных // T-Comm – Телекоммуникации и транспорт. – 2016. – Т. 10, №.7.
- ВОРОЖЦОВ А.С., ТУТОВА Н.В., ТУТОВ А.В. Про-грамма для прогнозирования перегрузки серверов с ис-пользованием комбинаторного метода группового уче-та аргументов на языке программирования Java. – Сви-детельство о регистрации программы для ЭВМ RUS 2018666780 07.12.2018.
- ВОРОЖЦОВ А.С., ТУТОВА Н.В., ТУТОВ А.В. Оптими-зация размещения облачных серверов в центрах обра-ботки данных // T-Comm – Телекоммуникации и транс-порт. – 2015. – Т. 9, №6. – С. 4–8.
- ИВАХНЕНКО А.Г., СТЕПАШКО В.С. Помехоустойчи-вость моделирования. – Киев: Наукова Думка, 1985. – 216 с.
- КРОТОВ В.Ф., ЛАГОША Б.А., ЛОБАНОВ С.М. и др. Ос-новы теории оптимального управления. – М.: Высшая школа, 1990. – 430 с.
- ТУТОВ А.В. и др. Многокритериальная оптимизация размещения виртуальных машин по физическим серве-рам в облачных центрах обработки данных // T-Comm – Телекоммуникации и транспорт. – 2021. – Т. 15, №1. – С. 28–34.
- ТУТОВ А.В. Модели и методы распределения ресурсов инфокоммуникационной системы облачных центров об-работки данных // Наукоемкие технологии в космиче-ских исследованиях Земли. – 2018. – Т. 10, №6. – С. 100–107.
- ХАНТИМИРОВ Р.И. Прогнозирование нагрузки в облач-ной вычислительной среде с использованием нейросетей Элмана, обучаемых системой искусственного иммуни-тета // Нейрокомпьютеры: разработка, применение. – 2015. – №3. – С. 59–64.
- ALHARBI F. et al. An ant colony system for energy-efficient dynamic virtual machine placement in data centers // Expert Systems with Applications. – 2019. – Vol. 120. – P. 228–238.
- ALHAMMADI A.S.A., VASANTHI V. Multi-objective algo-rithms for virtual machine selection and placement in cloud data center // Int. Congress of Advanced Technology and Engineering (ICOTEN–2021). – IEEE, 2021. – P. 1–7.
- BELOGLAZOV A., BUYYA R. Optimal online deterministic algorithms and adaptive heuristics for energy and perfor-mance efficient dynamic consolidation of virtual machines in cloud data centers // Concurrency and Computation: Practice and Experience. – 2012. – Vol. 24, No. 13. – P. 1397–1420.
- BELOGLAZOV A., BUYYA R. Managing overloaded hosts for dynamic consolidation of virtual machines in cloud data centers under quality of service constraints // IEEE Trans. on Parallel and Distributed Systems. – 2012. – Vol. 24, No. 7. – P. 1366–1379.
- BUYYA R. et al. A manifesto for future generation cloud computing: Research directions for the next decade // ACM computing surveys (CSUR). – 2018. – Vol. 51, No. 5. – P. 1–38.
- CALHEIROS R.N. et al. CloudSim: a toolkit for modeling and simulation of cloud computing environments and evalu-ation of resource provisioning algorithms // Software: Prac-tice and experience. – 2011. – Vol. 41, No. 1. – P. 23–50.
- CAMATI R.S., CALSAVARA A., LIMA JR L. Solving the virtual machine placement problem as a multiple multidi-mensional knapsack problem // ICN-2014. – 2014. – Vol. 264.
- DINESH KUMAR K., UMAMAHESWARI E. An efficient proactive VM consolidation technique with improved LSTM network in a cloud environment // Computing. – 2024. – Vol. 106, No. 1. – P. 1–28.
- FARZAI S., SHIRVANI M.H., RABBANI M. Multi-objective communication-aware optimization for virtual machine placement in cloud datacenters // Sustainable Computing: Informatics and Systems. – 2020. – Vol. 28. – P. 100374.
- FELLER E., RILLING L., MORIN C. Energy-aware ant col-ony based workload placement in clouds // IEEE/ACM 12th Int. Conf. on Grid Computing – 2011. – IEEE, 2011. – P. 26–33.
- FENG H., DENG Y., LI J. A global-energy-aware virtual machine placement strategy for cloud data centers // Journal of Systems Architecture. – 2021. – Vol. 116. – P. 102048.
- FERDAUS M.H. et al. Virtual machine consolidation in cloud data centers using ACO metaheuristic // Proc. of the 20th Int. Conf. Euro-Par–2014, Parallel Processing:, Porto, Portugal, August 25–29, 2014. 20. – Springer Int. Publishing, 2014. – P. 306–317.
- FERDAUS M.H. et al. An algorithm for network and data-aware placement of multi-tier applications in cloud data centers // Journal of Network and Computer Applications. – 2017. – Vol. 98. – P. 65–83.
- GAO Y. et al. A multi-objective ant colony system algorithm for virtual machine placement in cloud computing // Journal of computer and system sciences. – 2013. – Vol. 79, No. 8. – P. 1230–1242.
- GILL S.S., BUYYA R. Sustainable cloud computing realiza-tion for different applications: a manifesto // Digital Busi-ness: Business Algorithms, Cloud Computing and Data Engi-neering. – 2019. – P. 95–117.
- GULATI A. et al. Vmware distributed resource manage-ment: Design, implementation, and lessons learned // VMware Technical Journal. – 2012. – Vol. 1, No. 1. – P. 45–64.
- HUEBSCHER M.C., MCCANN J.A. A survey of autonomic computing—degrees, models, and applications // ACM Computing Surveys (CSUR). – 2008. – Vol. 40, No. 3. – P. 1–28.
- KIANI M., KHAYYAMBASHI M.R. A network-aware and power-efficient virtual machine placement scheme in cloud datacenters based on chemical reaction optimization // Computer Networks. – 2021. – Vol. 196. – P. 108270.
- KUHN H.W. The Hungarian method for the assignment problem // Naval research logistics quarterly. – 1955. – Vol. 2, No. 1–2. – P. 83–97.
- KUSIC D. et al. Power and performance management of vir-tualized computing environments via lookahead control // Cluster computing. – 2009. – Vol. 12. – P. 1–15.
- LU J. et al. Optimal machine placement based on improved genetic algorithm in cloud computing // The Journal of Su-percomputing. – 2022. – P. 1–29.
- LUO J.Y. et al. A cut-and-solve algorithm for virtual ma-chine consolidation problem // Future Generation Computer Systems. – 2024. – Vol. 154. – P. 359–372.
- MOGES F.F., ABEBE S.L. Energy-aware VM placement al-gorithms for the OpenStack Neat consolidation framework // Journal of Cloud Computing. – 2019. – Vol. 8, No. 1. – P. 2.
- MURTAZAEV A., OH S. Sercon: Server consolidation al-gorithm using live migration of virtual machines for green computing // IETE Technical Review. – 2011. – Vol. 28, No. 3. – P. 212–231.
- RANI K., SANGWAN O.P., GARG R. A critical review on energy efficient Rani scheduling techniques in cloud compu-ting // AIP Conference Proc. – AIP Publishing, 2023. – Vol. 2938, No. 1.
- SAXENA D. et al. A secure and multiobjective virtual ma-chine placement framework for cloud data center // IEEE Systems Journal. – 2021. – Vol. 16, No. 2. – P. 3163–3174.
- SHAW R., HOWLEY E., BARRETT E. An energy efficient anti-correlated virtual machine placement algorithm using resource usage predictions // Simulation Modelling Practice and Theory. – 2019. – Vol. 93. – P. 322–342.
- TOUTOV A.V. et al. Resource Allocation Algorithms for Single, Cluster and Tired Virtual Machines // Intelligent Technologies and Electronic Devices in Vehicle and Road Transport Complex (TIRVED–2023). – IEEE, 2023. – P. 1–4.
- TOUTOV A., VOROZHTSOV A., TOUTOVA N. Analytical approach to estimating total migration time of virtual ma-chines with various applications // Int. Journal of Embedded and Real-Time Communication Systems (IJERTCS). – 2020. – Vol. 11, No. 2. – P. 58–75.
- VOROZHTSOV A. S., TOUTOVA N.V., TOUTOV A.V. Resource control system stability of mobile data centers // Systems of Signals Generating and Processing in the Field of on Board Communications. – IEEE, 2018. – P. 1–4.
- WU Y. et al. Load prediction using hybrid model for compu-tational grid // 8th IEEE/ACM Int. Conf. on Grid Computing. – IEEE, 2007. – P. 235–242.
- XU J., FORTES J. A multi-objective approach to virtual ma-chine management in datacenters // Proc. of the 8th ACM Int. Conf. on Autonomic Computing. – 2011. – P. 225–234.
- XU J., FORTES J. Multi-objective virtual machine placement in virtualized data center environments // IEEE/ACM Int. Conf. on Green Computing and Communications & Int. Conf. on Cyber, Physical and Social Computing. – IEEE, 2010. – P. 179–188.
- YANG Q. et al. A new method based on PSR and EA-GMDH for host load prediction in cloud computing system // The Journal of Supercomputing. – 2014. – Vol. 68. – P. 1402–1417.
- ZHANG Q. et al. Dynamic energy-aware capacity provision-ing for cloud computing environments // Proc. of the 9th Int. Conf. on Autonomic computing. – 2012. – P. 145–154.
- URL: https://github.com/Cloudslab/cloudsim/tree/master/ modules/cloudsim-examples/src/main/resources/workload/planetlab (дата обращения: 05.05.2024).
Supplementary files
